Suppr超能文献

药物安全性的计算进展:基于知识工程方法的系统综述与图谱综述

Computational Advances in Drug Safety: Systematic and Mapping Review of Knowledge Engineering Based Approaches.

作者信息

Natsiavas Pantelis, Malousi Andigoni, Bousquet Cédric, Jaulent Marie-Christine, Koutkias Vassilis

机构信息

Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece.

Sorbonne Université, INSERM, Univ Paris 13, Laboratoire d'Informatique Médicale et d'Ingénierie des Connaissances pour la e-Santé, LIMICS, Paris, France.

出版信息

Front Pharmacol. 2019 May 17;10:415. doi: 10.3389/fphar.2019.00415. eCollection 2019.

Abstract

Drug Safety (DS) is a domain with significant public health and social impact. Knowledge Engineering (KE) is the Computer Science discipline elaborating on methods and tools for developing "knowledge-intensive" systems, depending on a conceptual "knowledge" schema and some kind of "reasoning" process. The present systematic and mapping review aims to investigate KE-based approaches employed for DS and highlight the introduced added value as well as trends and possible gaps in the domain. Journal articles published between 2006 and 2017 were retrieved from PubMed/MEDLINE and Web of Science® (873 in total) and filtered based on a comprehensive set of inclusion/exclusion criteria. The 80 finally selected articles were reviewed on full-text, while the mapping process relied on a set of concrete criteria (concerning specific KE and DS core activities, special DS topics, employed data sources, reference ontologies/terminologies, and computational methods, etc.). The analysis results are publicly available as online interactive analytics graphs. The review clearly depicted increased use of KE approaches for DS. The collected data illustrate the use of KE for various DS aspects, such as Adverse Drug Event (ADE) information collection, detection, and assessment. Moreover, the quantified analysis of using KE for the respective DS core activities highlighted room for intensifying research on KE for ADE monitoring, prevention and reporting. Finally, the assessed use of the various data sources for DS special topics demonstrated extensive use of dominant data sources for DS surveillance, i.e., Spontaneous Reporting Systems, but also increasing interest in the use of emerging data sources, e.g., observational healthcare databases, biochemical/genetic databases, and social media. Various exemplar applications were identified with promising results, e.g., improvement in Adverse Drug Reaction (ADR) prediction, detection of drug interactions, and novel ADE profiles related with specific mechanisms of action, etc. Nevertheless, since the reviewed studies mostly concerned proof-of-concept implementations, more intense research is required to increase the maturity level that is necessary for KE approaches to reach routine DS practice. In conclusion, we argue that efficiently addressing DS data analytics and management challenges requires the introduction of high-throughput KE-based methods for effective knowledge discovery and management, resulting ultimately, in the establishment of a continuous learning DS system.

摘要

药物安全(DS)是一个具有重大公共卫生和社会影响的领域。知识工程(KE)是计算机科学的一个学科,它阐述了用于开发“知识密集型”系统的方法和工具,这些系统依赖于概念性的“知识”模式和某种“推理”过程。本系统综述和映射综述旨在研究用于药物安全的基于知识工程的方法,并突出所引入的附加值以及该领域的趋势和可能存在的差距。从PubMed/MEDLINE和Web of Science®检索了2006年至2017年间发表的期刊文章(共873篇),并根据一套全面的纳入/排除标准进行筛选。对最终选定的80篇文章进行了全文审查,而映射过程则依赖于一组具体标准(涉及特定的知识工程和药物安全核心活动、特殊的药物安全主题、使用的数据源、参考本体/术语以及计算方法等)。分析结果以在线交互式分析图的形式公开提供。该综述清楚地表明了基于知识工程的方法在药物安全领域的使用有所增加。收集的数据说明了知识工程在药物安全各个方面的应用,如药物不良事件(ADE)信息的收集、检测和评估。此外,对在各自的药物安全核心活动中使用知识工程的定量分析突出了在加强对药物不良事件监测、预防和报告的知识工程研究方面仍有空间。最后,对药物安全特殊主题的各种数据源的评估使用表明,在药物安全监测中广泛使用了主要数据源,即自发报告系统,但对新兴数据源(如观察性医疗保健数据库、生化/遗传数据库和社交媒体)的使用兴趣也在增加。确定了各种具有前景结果的示例应用,如药物不良反应(ADR)预测的改善、药物相互作用的检测以及与特定作用机制相关的新型药物不良事件特征等。然而,由于所审查的研究大多涉及概念验证实施,需要进行更深入的研究以提高知识工程方法达到常规药物安全实践所需的成熟度。总之,我们认为,要有效应对药物安全数据分析和管理挑战,需要引入基于知识工程的高通量方法进行有效的知识发现和管理,最终建立一个持续学习的药物安全系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4c9/6533857/f5dc4f87161e/fphar-10-00415-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验