Kropp Christina, Kempf Henning, Halloin Caroline, Robles-Diaz Diana, Franke Annika, Scheper Thomas, Kinast Katharina, Knorpp Thomas, Joos Thomas O, Haverich Axel, Martin Ulrich, Zweigerdt Robert, Olmer Ruth
Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover, Germany REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany.
Institute of Technical Chemistry, Gottfried-Wilhelm-Leibniz University Hannover, Hannover, Germany.
Stem Cells Transl Med. 2016 Oct;5(10):1289-1301. doi: 10.5966/sctm.2015-0253. Epub 2016 Jul 1.
: The routine application of human pluripotent stem cells (hPSCs) and their derivatives in biomedicine and drug discovery will require the constant supply of high-quality cells by defined processes. Culturing hPSCs as cell-only aggregates in (three-dimensional [3D]) suspension has the potential to overcome numerous limitations of conventional surface-adherent (two-dimensional [2D]) cultivation. Utilizing single-use instrumented stirred-tank bioreactors, we showed that perfusion resulted in a more homogeneous culture environment and enabled superior cell densities of 2.85 × 10 cells per milliliter and 47% higher cell yields compared with conventional repeated batch cultures. Flow cytometry, quantitative reverse-transcriptase polymerase chain reaction, and global gene expression analysis revealed a high similarity across 3D suspension and 2D precultures, underscoring that matrix-free hPSC culture efficiently supports maintenance of pluripotency. Interestingly, physiological data and gene expression assessment indicated distinct changes of the cells' energy metabolism, suggesting a culture-induced switch from glycolysis to oxidative phosphorylation in the absence of hPSC differentiation. Our data highlight the plasticity of hPSCs' energy metabolism and provide clear physiological and molecular targets for process monitoring and further development. This study paves the way toward more efficient GMP-compliant cell production and underscores the enormous process development potential of hPSCs in suspension culture.
Human pluripotent stem cells (hPSCs) are a unique source for the, in principle, unlimited production of functional human cell types in vitro, which are of high value for therapeutic and industrial applications. This study applied single-use, clinically compliant bioreactor technology to develop advanced, matrix-free, and more efficient culture conditions for the mass production of hPSCs in scalable suspension culture. Using extensive analytical tools to compare established conditions with this novel culture strategy, unexpected physiological features of hPSCs were discovered. These data allow a more rational process development, providing significant progress in the field of translational stem cell research and medicine.
人类多能干细胞(hPSC)及其衍生物在生物医学和药物研发中的常规应用需要通过特定流程持续供应高质量细胞。将hPSC作为仅细胞聚集体在(三维[3D])悬浮液中培养有潜力克服传统表面贴壁(二维[2D])培养的诸多局限性。利用一次性仪器搅拌罐生物反应器,我们发现灌注可产生更均匀的培养环境,与传统重复批次培养相比,能实现每毫升2.85×10个细胞的更高细胞密度以及47%更高的细胞产量。流式细胞术、定量逆转录聚合酶链反应和全基因表达分析显示3D悬浮培养和2D预培养具有高度相似性,强调无基质hPSC培养能有效支持多能性的维持。有趣的是,生理学数据和基因表达评估表明细胞能量代谢发生了明显变化,这表明在无hPSC分化的情况下,培养诱导了从糖酵解到氧化磷酸化的转变。我们的数据突出了hPSC能量代谢的可塑性,并为过程监测和进一步开发提供了明确的生理学和分子靶点。本研究为更高效的符合药品生产质量管理规范(GMP)的细胞生产铺平了道路,并强调了hPSC在悬浮培养中的巨大过程开发潜力。
人类多能干细胞(hPSC)原则上是体外无限生产功能性人类细胞类型的独特来源,对治疗和工业应用具有很高价值。本研究应用一次性、临床适用的生物反应器技术,为在可扩展悬浮培养中大规模生产hPSC开发先进、无基质且更高效的培养条件。使用广泛的分析工具将既定条件与这种新型培养策略进行比较,发现了hPSC意想不到的生理学特征。这些数据有助于更合理地进行过程开发,在转化干细胞研究和医学领域取得了重大进展。