Suppr超能文献

衰老对微循环的影响:基于激光散斑对比图像的多尺度熵方法

Aging effect on microcirculation: A multiscale entropy approach on laser speckle contrast images.

作者信息

Khalil A, Humeau-Heurtier A, Gascoin L, Abraham P, Mahé G

机构信息

LARIS-Laboratoire Angevin de Recherche en Ingénierie des Systèmes, University of Angers, 62 Avenue Notre-Dame du Lac, Angers 49000, France.

Laboratoire de Physiologie et d'Explorations Vasculaires, Hospital of Angers, University of Angers, Angers Cedex 01 49033, France.

出版信息

Med Phys. 2016 Jul;43(7):4008. doi: 10.1118/1.4953189.

Abstract

PURPOSE

It has long been known that age plays a crucial role in the deterioration of microvessels. The assessment of such deteriorations can be achieved by monitoring microvascular blood flow. Laser speckle contrast imaging (LSCI) is a powerful optical imaging tool that provides two-dimensional information on microvascular blood flow. The technique has recently been commercialized, and hence, few works discuss the postacquisition processing of laser speckle contrast images recorded in vivo. By applying entropy-based complexity measures to LSCI time series, we present herein the first attempt to study the effect of aging on microcirculation by measuring the complexity of microvascular signals over multiple time scales.

METHODS

Forearm skin microvascular blood flow was studied with LSCI in 18 healthy subjects. The subjects were subdivided into two age groups: younger (20-30 years old, n = 9) and older (50-68 years old, n = 9). To estimate age-dependent changes in microvascular blood flow, we applied three entropy-based complexity algorithms to LSCI time series.

RESULTS

The application of entropy-based complexity algorithms to LSCI time series can differentiate younger from older groups: the data fluctuations in the younger group have a significantly higher complexity than those obtained from the older group.

CONCLUSIONS

The effect of aging on microcirculation can be estimated by using entropy-based complexity algorithms to LSCI time series.

摘要

目的

长期以来,人们都知道年龄在微血管退化过程中起着关键作用。通过监测微血管血流可以评估这种退化情况。激光散斑对比成像(LSCI)是一种强大的光学成像工具,可提供关于微血管血流的二维信息。该技术最近已商业化,因此,很少有研究讨论体内记录的激光散斑对比图像的采集后处理。通过将基于熵的复杂性度量应用于LSCI时间序列,我们在此首次尝试通过测量多个时间尺度上微血管信号的复杂性来研究衰老对微循环的影响。

方法

在18名健康受试者中,使用LSCI研究前臂皮肤微血管血流。受试者被分为两个年龄组:较年轻组(20 - 30岁,n = 9)和较年长组(50 - 68岁,n = 9)。为了估计微血管血流中与年龄相关的变化,我们将三种基于熵的复杂性算法应用于LSCI时间序列。

结果

将基于熵的复杂性算法应用于LSCI时间序列能够区分较年轻组和较年长组:较年轻组的数据波动复杂性明显高于较年长组。

结论

通过将基于熵的复杂性算法应用于LSCI时间序列,可以估计衰老对微循环的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验