Hathout Leith, Patel Vishal
Harvard Medical School, Boston, MA 02115‑5750, USA.
Department of Radiological Sciences, David Geffen School of Medicine, University of California‑Los Angeles, Los Angeles, CA 90095, USA.
Oncol Rep. 2016 Aug;36(2):696-704. doi: 10.3892/or.2016.4878. Epub 2016 Jun 15.
Mathematical modeling and serial magnetic resonance imaging (MRI) used to calculate patient-specific rates of tumor diffusion, D, and proliferation, ρ, can be combined to simulate glioblastoma multiforme (GBM) growth. We showed that the proportion and distribution of tumor cells below the MRI threshold are determined by the D/ρ ratio of the tumor. As most radiation fields incorporate a 1‑3 cm margin to account for subthreshold tumor, accurate characterization of subthreshold tumor aids the design of optimal radiation fields. This study compared two models: a standard one‑dimensional (1D) isotropic model and a three‑dimensional (3D) anisotropic model using the advanced imaging method of diffusion tensor imaging (DTI) ‑ with regards to the D/ρ ratio's effect on the proportion and spatial extent of the subthreshold tumor. A validated reaction‑diffusion equation accounting for tumor diffusion and proliferation modeled tumor concentration in time and space. For the isotropic and anisotropic models, nine tumors with different D/ρ ratios were grown to a T1 radius of 1.5 cm. For each tumor, the percent and extent of tumor cells beyond the T2 radius were calculated. For both models, higher D/ρ ratios were correlated with a greater proportion and extent of subthreshold tumor. Anisotropic modeling demonstrated a higher proportion and extent of subthreshold tumor than predicted by the isotropic modeling. Because the quantity and distribution of subthreshold tumor depended on the D/ρ ratio, this ratio should influence radiation field demarcation. Furthermore, the use of DTI data to account for anisotropic tumor growth allows for more refined characterization of the subthreshold tumor based on the patient-specific D/ρ ratio.
用于计算患者特异性肿瘤扩散率D和增殖率ρ的数学建模和序列磁共振成像(MRI),可以结合起来模拟多形性胶质母细胞瘤(GBM)的生长。我们发现,MRI阈值以下肿瘤细胞的比例和分布由肿瘤的D/ρ比率决定。由于大多数辐射野包含1-3厘米的边界以考虑阈值以下肿瘤,准确表征阈值以下肿瘤有助于设计最佳辐射野。本研究比较了两种模型:一个标准的一维(1D)各向同性模型和一个使用扩散张量成像(DTI)先进成像方法的三维(3D)各向异性模型——关于D/ρ比率对阈值以下肿瘤的比例和空间范围的影响。一个经过验证的考虑肿瘤扩散和增殖的反应扩散方程对肿瘤浓度在时间和空间上进行了建模。对于各向同性和各向异性模型,将九个具有不同D/ρ比率的肿瘤生长到T1半径为1.5厘米。对于每个肿瘤,计算超出T2半径的肿瘤细胞百分比和范围。对于这两种模型,较高的D/ρ比率与阈值以下肿瘤的更大比例和范围相关。各向异性建模显示阈值以下肿瘤的比例和范围高于各向同性建模的预测。由于阈值以下肿瘤的数量和分布取决于D/ρ比率,该比率应影响辐射野的划定。此外,使用DTI数据来考虑各向异性肿瘤生长,可以根据患者特异性D/ρ比率对阈值以下肿瘤进行更精细的表征。