Suppr超能文献

中枢神经系统疾病的药物设计:使用化学信息学、3D-QSAR和虚拟筛选方法对化合物进行多药理学分析。

Drug Design for CNS Diseases: Polypharmacological Profiling of Compounds Using Cheminformatic, 3D-QSAR and Virtual Screening Methodologies.

作者信息

Nikolic Katarina, Mavridis Lazaros, Djikic Teodora, Vucicevic Jelica, Agbaba Danica, Yelekci Kemal, Mitchell John B O

机构信息

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade Belgrade, Serbia.

School of Biological and Chemical Sciences, Queen Mary University of London London, UK.

出版信息

Front Neurosci. 2016 Jun 10;10:265. doi: 10.3389/fnins.2016.00265. eCollection 2016.

Abstract

HIGHLIGHTS Many CNS targets are being explored for multi-target drug designNew databases and cheminformatic methods enable prediction of primary pharmaceutical target and off-targets of compoundsQSAR, virtual screening and docking methods increase the potential of rational drug design The diverse cerebral mechanisms implicated in Central Nervous System (CNS) diseases together with the heterogeneous and overlapping nature of phenotypes indicated that multitarget strategies may be appropriate for the improved treatment of complex brain diseases. Understanding how the neurotransmitter systems interact is also important in optimizing therapeutic strategies. Pharmacological intervention on one target will often influence another one, such as the well-established serotonin-dopamine interaction or the dopamine-glutamate interaction. It is now accepted that drug action can involve plural targets and that polypharmacological interaction with multiple targets, to address disease in more subtle and effective ways, is a key concept for development of novel drug candidates against complex CNS diseases. A multi-target therapeutic strategy for Alzheimer's disease resulted in the development of very effective Multi-Target Designed Ligands (MTDL) that act on both the cholinergic and monoaminergic systems, and also retard the progression of neurodegeneration by inhibiting amyloid aggregation. Many compounds already in databases have been investigated as ligands for multiple targets in drug-discovery programs. A probabilistic method, the Parzen-Rosenblatt Window approach, was used to build a "predictor" model using data collected from the ChEMBL database. The model can be used to predict both the primary pharmaceutical target and off-targets of a compound based on its structure. Several multi-target ligands were selected for further study, as compounds with possible additional beneficial pharmacological activities. Based on all these findings, it is concluded that multipotent ligands targeting AChE/MAO-A/MAO-B and also D1-R/D2-R/5-HT2A -R/H3-R are promising novel drug candidates with improved efficacy and beneficial neuroleptic and procognitive activities in treatment of Alzheimer's and related neurodegenerative diseases. Structural information for drug targets permits docking and virtual screening and exploration of the molecular determinants of binding, hence facilitating the design of multi-targeted drugs. The crystal structures and models of enzymes of the monoaminergic and cholinergic systems have been used to investigate the structural origins of target selectivity and to identify molecular determinants, in order to design MTDLs.

摘要

要点

许多中枢神经系统靶点正被用于多靶点药物设计的探索

新的数据库和化学信息学方法能够预测化合物的主要药物靶点和脱靶效应

定量构效关系、虚拟筛选和对接方法增加了合理药物设计的潜力

中枢神经系统(CNS)疾病涉及的多种脑机制以及表型的异质性和重叠性表明,多靶点策略可能适合于改善复杂脑部疾病的治疗。了解神经递质系统如何相互作用对于优化治疗策略也很重要。对一个靶点的药理干预往往会影响另一个靶点,比如已被充分证实的5-羟色胺-多巴胺相互作用或多巴胺-谷氨酸相互作用。现在人们已经认识到,药物作用可能涉及多个靶点,与多个靶点的多药理学相互作用,以更微妙和有效的方式治疗疾病,是开发针对复杂中枢神经系统疾病的新型候选药物的关键概念。一种针对阿尔茨海默病的多靶点治疗策略导致了非常有效的多靶点设计配体(MTDL)的开发,这些配体作用于胆碱能和单胺能系统,还通过抑制淀粉样蛋白聚集来延缓神经退行性变的进展。数据库中已有许多化合物在药物发现项目中作为多靶点配体进行了研究。一种概率方法,即Parzen-Rosenblatt窗口方法,被用于利用从ChEMBL数据库收集的数据构建一个“预测器”模型。该模型可用于根据化合物的结构预测其主要药物靶点和脱靶效应。选择了几种多靶点配体进行进一步研究,作为可能具有额外有益药理活性的化合物。基于所有这些发现,得出结论:靶向乙酰胆碱酯酶/单胺氧化酶-A/单胺氧化酶-B以及多巴胺D1受体/多巴胺D2受体/5-羟色胺2A受体/组胺H3受体的多效配体是有前景的新型候选药物,在治疗阿尔茨海默病及相关神经退行性疾病方面具有更高的疗效以及有益的抗精神病和促认知活性。药物靶点的结构信息允许进行对接和虚拟筛选,并探索结合的分子决定因素,从而促进多靶点药物的设计。单胺能和胆碱能系统酶的晶体结构和模型已被用于研究靶点选择性的结构起源并识别分子决定因素,以设计多靶点设计配体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c47/4901078/aa68287e281f/fnins-10-00265-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验