Suppr超能文献

无囊泡控制释放:静电吸附消除了 PLGA 纳米粒中蛋白质囊泡化的需要。

Encapsulation-free controlled release: Electrostatic adsorption eliminates the need for protein encapsulation in PLGA nanoparticles.

机构信息

Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.; Institute for Biomaterials and Biomedical Engineering, University of Toronto, Ontario M5S 3G9, Canada.

Institute for Biomaterials and Biomedical Engineering, University of Toronto, Ontario M5S 3G9, Canada.

出版信息

Sci Adv. 2016 May 27;2(5):e1600519. doi: 10.1126/sciadv.1600519. eCollection 2016 May.

Abstract

Encapsulation of therapeutic molecules within polymer particles is a well-established method for achieving controlled release, yet challenges such as low loading, poor encapsulation efficiency, and loss of protein activity limit clinical translation. Despite this, the paradigm for the use of polymer particles in drug delivery has remained essentially unchanged for several decades. By taking advantage of the adsorption of protein therapeutics to poly(lactic-co-glycolic acid) (PLGA) nanoparticles, we demonstrate controlled release without encapsulation. In fact, we obtain identical, burst-free, extended-release profiles for three different protein therapeutics with and without encapsulation in PLGA nanoparticles embedded within a hydrogel. Using both positively and negatively charged proteins, we show that short-range electrostatic interactions between the proteins and the PLGA nanoparticles are the underlying mechanism for controlled release. Moreover, we demonstrate tunable release by modifying nanoparticle concentration, nanoparticle size, or environmental pH. These new insights obviate the need for encapsulation and offer promising, translatable strategies for a more effective delivery of therapeutic biomolecules.

摘要

将治疗分子封装在聚合物颗粒内是实现控制释放的一种成熟方法,但低载药量、封装效率差和蛋白质活性丧失等挑战限制了其临床转化。尽管如此,聚合物颗粒在药物传递中的应用模式在几十年内基本没有改变。通过利用蛋白质治疗剂对聚(乳酸-共-乙醇酸)(PLGA)纳米颗粒的吸附作用,我们证明了无需封装即可实现控制释放。事实上,我们在水凝胶中嵌入的 PLGA 纳米颗粒内,对于三种不同的蛋白质治疗剂,无论是封装还是不封装,都得到了相同的、无突释、延长释放的图谱。使用带正电荷和带负电荷的蛋白质,我们表明蛋白质和 PLGA 纳米颗粒之间的短程静电相互作用是控制释放的基础机制。此外,我们通过改变纳米颗粒浓度、纳米颗粒大小或环境 pH 值来证明了可调节的释放。这些新的见解排除了封装的必要性,并为治疗性生物分子更有效的传递提供了有前途的、可转化的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b97a/4928928/35f8927d86a2/1600519-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验