Schammé Benjamin, Mignot Mélanie, Couvrat Nicolas, Tognetti Vincent, Joubert Laurent, Dupray Valérie, Delbreilh Laurent, Dargent Eric, Coquerel Gérard
Normandie Univ, Laboratoire SMS - EA3233, Univ Rouen , F-76821 Mont Saint Aignan, France.
AMME-LECAP EA 4528 International Lab, Avenue de l'Université, BP12, Normandie Univ, Université de Rouen Normandie , 76801 St Etienne du Rouvray, France.
J Phys Chem B. 2016 Aug 4;120(30):7579-92. doi: 10.1021/acs.jpcb.6b04242. Epub 2016 Jul 27.
In this article, we conduct a comprehensive molecular relaxation study of amorphous Quinidine above and below the glass-transition temperature (Tg) through broadband dielectric relaxation spectroscopy (BDS) experiments and theoretical density functional theory (DFT) calculations, as one major issue with the amorphous state of pharmaceuticals is life expectancy. These techniques enabled us to determine what kind of molecular motions are responsible, or not, for the devitrification of Quinidine. Parameters describing the complex molecular dynamics of amorphous Quinidine, such as Tg, the width of the α relaxation (βKWW), the temperature dependence of α-relaxation times (τα), the fragility index (m), and the apparent activation energy of secondary γ relaxation (Ea-γ), were characterized. Above Tg (> 60 °C), a medium degree of nonexponentiality (βKWW = 0.5) was evidenced. An intermediate value of the fragility index (m = 86) enabled us to consider Quinidine as a glass former of medium fragility. Below Tg (< 60 °C), one well-defined secondary γ relaxation, with an apparent activation energy of Ea-γ = 53.8 kJ/mol, was reported. From theoretical DFT calculations, we identified the most reactive part of Quinidine moieties through exploration of the potential energy surface. We evidenced that the clearly visible γ process has an intramolecular origin coming from the rotation of the CH(OH)C9H14N end group. An excess wing observed in amorphous Quinidine was found to be an unresolved Johari-Goldstein relaxation. These studies were supplemented by sub-Tg experimental evaluations of the life expectancy of amorphous Quinidine by X-ray powder diffraction and differential scanning calorimetry. We show that the difference between Tg and the onset temperature for crystallization, Tc, which is 30 K, is sufficiently large to avoid recrystallization of amorphous Quinidine during 16 months of storage under ambient conditions.
在本文中,我们通过宽带介电弛豫光谱(BDS)实验和理论密度泛函理论(DFT)计算,对玻璃化转变温度(Tg)以上和以下的非晶态奎尼丁进行了全面的分子弛豫研究,因为药物非晶态的一个主要问题是寿命。这些技术使我们能够确定哪些分子运动对奎尼丁的失透有影响或没有影响。描述非晶态奎尼丁复杂分子动力学的参数,如Tg、α弛豫宽度(βKWW)、α弛豫时间的温度依赖性(τα)、脆性指数(m)和次级γ弛豫的表观活化能(Ea-γ),都得到了表征。在Tg以上(>60°C),证明了中等程度的非指数性(βKWW = 0.5)。脆性指数的中间值(m = 86)使我们能够将奎尼丁视为中等脆性的玻璃形成剂。在Tg以下(<60°C),报道了一个明确的次级γ弛豫,其表观活化能为Ea-γ = 53.8 kJ/mol。通过理论DFT计算,我们通过探索势能面确定了奎尼丁部分最具反应性的部分。我们证明,清晰可见的γ过程具有分子内起源,来自CH(OH)C9H14N端基的旋转。在非晶态奎尼丁中观察到的额外翼峰被发现是未解析的乔哈里-戈尔茨坦弛豫。这些研究通过X射线粉末衍射和差示扫描量热法对非晶态奎尼丁寿命的亚Tg实验评估得到了补充。我们表明,Tg与结晶起始温度Tc之间的差值为30 K,足够大,以避免非晶态奎尼丁在环境条件下储存16个月期间发生重结晶。