Grup de Caracterització de Materials, Departament de Física and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, Barcelona, Catalonia 08019, Spain.
Université Bordeaux, Laboratoire Ondes et Matière d'Aquitaine, UMR 5798, 351 Cours de la Libération, Talence F-33400, France.
Mol Pharm. 2021 Apr 5;18(4):1819-1832. doi: 10.1021/acs.molpharmaceut.1c00081. Epub 2021 Mar 9.
Chemical derivatization and amorphization are two possible strategies to improve the solubility and bioavailability of drugs, which is a key issue for the pharmaceutical industry. In this contribution, we explore whether both strategies can be combined by studying how small differences in the molecular structure of three related pharmaceutical compounds affect their crystalline structure and melting point (), the relaxation dynamics in the amorphous phase, and the glass transition temperature (), as well as the tendency toward recrystallization. Three benzodiazepine derivatives of almost same molecular mass and structure (Diazepam, Nordazepam and Tetrazepam) were chosen as model compounds. Nordazepam is the only one that displays N-H···O hydrogen bonds both in crystalline and amorphous phases, which leads to a significantly higher (by 70-80 K) and (by 30-40 K) compared to those of Tetrazepam and Diazepam (which display similar values of characteristic temperatures). The relaxation dynamics in the amorphous phase, as determined experimentally using broadband dielectric spectroscopy, is dominated by a structural relaxation and a Johari-Goldstein secondary relaxation, both of which scale with the reduced temperature /. The kinetic fragility index is very low and virtually the same ( ≈ 32) in all three compounds. Two more secondary relaxations are observed in the glass state: the slower of the two has virtually the same relaxation time and activation energy in all three compounds, and is assigned to the inter-enantiomer conversion dynamics of the flexible diazepine heterocycle between isoenergetic P and M conformations. We tentatively assign the fastest secondary relaxation, present only in Diazepam and Tetrazepam, to the rigid rotation of the fused diazepine-benzene double ring relative to the six-membered carbon ring. Such motion appears to be largely hindered in glassy Nordazepam, possibly due to the presence of the hydrogen bonds. Supercooled liquid Tetrazepam and Nordazepam are observed to crystallize into their stable crystalline form with an Avrami exponent close to unity indicating unidimensional growth with only sporadic nucleation, which allows a direct assessment of the crystal growth rate. Despite the very similar growth mode, the two derivatives exhibit very different kinetics for a fixed value of the reduced temperature and thus of the structural relaxation time, with Nordazepam displaying slower growth kinetics. Diazepam does not instead display any tendency toward recrystallization over short periods of time (even close to ). Both these observations in three very similar diazepine derivatives provide direct evidence that the kinetics of recrystallization of amorphous pharmaceuticals is not a universal function, at least in the supercooled liquid phase, of the structural or the conformational relaxation dynamics, and it is not simply correlated with related parameters such as the kinetic fragility or activation barrier of the structural relaxation. Only the crystal growth rate, and not the nucleation rate, shows a correlation with the presence or absence of hydrogen bonding.
化学衍生化和非晶化是提高药物溶解度和生物利用度的两种可能策略,这是制药行业的关键问题。在本研究中,我们通过研究三种相关药物化合物的分子结构的微小差异如何影响它们的晶体结构和熔点 (T m)、非晶相中的弛豫动力学和玻璃化转变温度 (T g) 以及重结晶的趋势,来探索这两种策略是否可以结合使用。我们选择了三种具有几乎相同分子量和结构的苯并二氮䓬衍生物(地西泮、去甲西泮和佐匹克隆)作为模型化合物。去甲西泮是唯一在晶体和非晶相中都显示 N-H···O 氢键的化合物,这导致其 T m(高 70-80 K)和 T g(高 30-40 K)明显高于佐匹克隆和地西泮(显示出相似的特征温度值)。使用宽带介电光谱法实验确定的非晶相弛豫动力学由结构弛豫和 Johari-Goldstein 二次弛豫主导,这两种弛豫均与降低的温度 /T 成正比。动力学脆性指数非常低,在所有三种化合物中几乎相同( ≈ 32)。在玻璃态中还观察到另外两个二次松弛:两个中较慢的一个在所有三种化合物中具有几乎相同的弛豫时间和活化能,并被分配给柔性苯并二氮䓬杂环在等能量 P 和 M 构象之间的互对映体转换动力学。我们推测,最快的二次弛豫(仅在地西泮和佐匹克隆中存在)归因于稠合的苯并二氮䓬-苯环相对于六元碳环的刚性旋转。在玻璃态的去甲西泮中,这种运动似乎受到很大阻碍,可能是由于氢键的存在。过冷的液体佐匹克隆和去甲西泮被观察到结晶成其稳定的晶体形式,Avrami 指数接近 1,表明只有零星成核的一维生长,这允许直接评估晶体生长速率。尽管生长模式非常相似,但在固定的降低温度值下,两种衍生物的动力学表现出非常不同,去甲西泮显示出较慢的生长动力学。相反,地西泮在短时间内(甚至接近 )没有显示出任何重结晶的趋势。这三个非常相似的苯并二氮䓬衍生物中的这两个观察结果提供了直接证据,表明非晶态药物重结晶的动力学不是结构或构象弛豫动力学的普遍函数,至少在过冷液相中不是,它也不是简单地与相关参数相关,如结构弛豫的动力学脆性或活化能。只有晶体生长速率,而不是成核速率,与氢键的存在与否显示出相关性。