Gilabert-Oriol Roger, Thakur Mayank, Haussmann Katy, Niesler Nicole, Bhargava Cheenu, Görick Cornelia, Fuchs Hendrik, Weng Alexander
Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.
Institut für Pharmazie, Freie Universität Berlin, Berlin, Germany.
Planta Med. 2016 Dec;82(18):1525-1531. doi: 10.1055/s-0042-110495. Epub 2016 Jul 8.
Triterpenoidal saponins are synthesized in the roots of L. The same plant is also a source for the toxin Saporin, which is a ribosome-inactivating protein. Triterpenoidal saponins are known to increase the cytotoxicity of Saporin by modulating its intracellular trafficking. Here, we investigated if the combinatorial effects elicited by purified saponins and Saporin can be applied to increase the therapeutic efficacy of the immunotoxin Saporin-Rituximab. First, saponins were purified by high-performance liquid chromatography. Thereafter, their intrinsic cytotoxicity was evaluated on Ramos cells with no observed effect up to 5 µg/mL, however, saponins increased the cytotoxicity of Saporin, while no influence was observed on its -glycosidase activity. Saporin-Rituximab bound to CD20 in Ramos cells and, in the absence of saponins, had a GI (concentration inhibiting cell growth to 50 %) of 7 nM. However, in the presence of a nontoxic concentration of saponins, the GI of Saporin-Rituximab was 0.01 nM, a nearly 700-fold increase in efficacy. Moreover, two further immunotoxins, namely Saporin-anti-CD22 and Saporin-anti-CD25, were tested in combination with saponins yielding enhancement factors of 170-fold and 25-fold, respectively. All three receptors are present in Ramos cells and the differences in cytotoxicity enhancement may be explained by the differing expression levels of the cellular receptors. The application of purified saponins from L. is therefore a new strategy to potentially improve the cytotoxicity and therapeutic efficacy of Rituximab-immunotoxins for the treatment of B-cell lymphoma.
三萜皂苷在[植物名称未给出,推测为Ligustrum(女贞属植物)]的根部合成。同一植物也是毒素皂草素的来源,皂草素是一种核糖体失活蛋白。已知三萜皂苷可通过调节其细胞内运输来增加皂草素的细胞毒性。在此,我们研究了纯化的皂苷和皂草素引发的联合效应是否可用于提高免疫毒素皂草素 - 利妥昔单抗的治疗效果。首先,通过高效液相色谱法纯化皂苷。此后,在拉莫斯细胞上评估其内在细胞毒性,在高达5μg/mL时未观察到效果,然而,皂苷增加了皂草素的细胞毒性,同时未观察到对其N - 糖苷酶活性有影响。皂草素 - 利妥昔单抗与拉莫斯细胞中的CD20结合,在没有皂苷的情况下,其GI(抑制细胞生长至50%的浓度)为7 nM。然而,在无毒浓度的皂苷存在下,皂草素 - 利妥昔单抗的GI为0.01 nM,疗效提高了近700倍。此外,还测试了另外两种免疫毒素,即皂草素 - 抗CD22和皂草素 - 抗CD25与皂苷的联合使用,分别产生了170倍和25倍的增强因子。所有三种受体都存在于拉莫斯细胞中,细胞毒性增强的差异可能由细胞受体的不同表达水平来解释。因此,应用来自[植物名称未给出,推测为Ligustrum(女贞属植物)]的纯化皂苷是一种潜在的新策略,可提高利妥昔单抗免疫毒素治疗B细胞淋巴瘤的细胞毒性和治疗效果。