Winter Lilli, Wittig Ilka, Peeva Viktoriya, Eggers Britta, Heidler Juliana, Chevessier Frederic, Kley Rudolf A, Barkovits Katalin, Strecker Valentina, Berwanger Carolin, Herrmann Harald, Marcus Katrin, Kornblum Cornelia, Kunz Wolfram S, Schröder Rolf, Clemen Christoph S
Institute of Neuropathology, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany.
Functional Proteomics, SFB815 Core Unit, Medical School, Goethe University, 60590, Frankfurt, Germany.
Acta Neuropathol. 2016 Sep;132(3):453-73. doi: 10.1007/s00401-016-1592-7. Epub 2016 Jul 8.
Secondary mitochondrial dysfunction is a feature in a wide variety of human protein aggregate diseases caused by mutations in different proteins, both in the central nervous system and in striated muscle. The functional relationship between the expression of a mutated protein and mitochondrial dysfunction is largely unknown. In particular, the mechanism how this dysfunction drives the disease process is still elusive. To address this issue for protein aggregate myopathies, we performed a comprehensive, multi-level analysis of mitochondrial pathology in skeletal muscles of human patients with mutations in the intermediate filament protein desmin and in muscles of hetero- and homozygous knock-in mice carrying the R349P desmin mutation. We demonstrate that the expression of mutant desmin causes disruption of the extrasarcomeric desmin cytoskeleton and extensive mitochondrial abnormalities regarding subcellular distribution, number and shape. At the molecular level, we uncovered changes in the abundancy and assembly of the respiratory chain complexes and supercomplexes. In addition, we revealed a marked reduction of mtDNA- and nuclear DNA-encoded mitochondrial proteins in parallel with large-scale deletions in mtDNA and reduced mtDNA copy numbers. Hence, our data demonstrate that the expression of mutant desmin causes multi-level damage of mitochondria already in early stages of desminopathies.
继发性线粒体功能障碍是由不同蛋白质突变引起的多种人类蛋白质聚集疾病的一个特征,这些疾病累及中枢神经系统和横纹肌。突变蛋白表达与线粒体功能障碍之间的功能关系在很大程度上尚不清楚。特别是,这种功能障碍驱动疾病进程的机制仍然难以捉摸。为了解决蛋白质聚集性肌病的这一问题,我们对中间丝蛋白结蛋白发生突变的人类患者骨骼肌以及携带R349P结蛋白突变的杂合和纯合敲入小鼠的肌肉中的线粒体病理进行了全面的多层次分析。我们证明,突变型结蛋白的表达会导致肌节外结蛋白细胞骨架的破坏以及线粒体在亚细胞分布、数量和形态方面出现广泛异常。在分子水平上,我们发现呼吸链复合物和超复合物的丰度及组装发生了变化。此外,我们还发现,与线粒体DNA大规模缺失和线粒体DNA拷贝数减少同时出现的是,线粒体DNA和核DNA编码的线粒体蛋白显著减少。因此,我们的数据表明,突变型结蛋白的表达在结蛋白病的早期阶段就会导致线粒体的多层次损伤。