Fu Xuyang, Zhang Feng, Dong Xiaoxuan, Pu Linbin, Feng Yan, Xu Yang, Gao Feng, Liang Tian, Kang Jianmeng, Sun Hongke, Hong Tingting, Liu Yunxia, Zhou Hongmei, Jiang Jun, Yin Deling, Hu Xinyang, Wang Da-Zhi, Ding Jian, Chen Jinghai
Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China.
Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
Cell Death Differ. 2025 Jan;32(1):177-193. doi: 10.1038/s41418-024-01363-w. Epub 2024 Aug 15.
Coordinated cytoskeleton-mitochondria organization during myogenesis is crucial for muscle development and function. Our understanding of the underlying regulatory mechanisms remains inadequate. Here, we identified a novel muscle-enriched protein, PRR33, which is upregulated during myogenesis and acts as a promyogenic factor. Depletion of Prr33 in C2C12 represses myoblast differentiation. Genetic deletion of Prr33 in mice reduces myofiber size and decreases muscle strength. The Prr33 mutant mice also exhibit impaired myogenesis and defects in muscle regeneration in response to injury. Interactome and transcriptome analyses reveal that PRR33 regulates cytoskeleton and mitochondrial function. Remarkably, PRR33 interacts with DESMIN, a key regulator of cytoskeleton-mitochondria organization in muscle cells. Abrogation of PRR33 in myocytes substantially abolishes the interaction of DESMIN filaments with mitochondria, leading to abnormal intracellular accumulation of DESMIN and mitochondrial disorganization/dysfunction in myofibers. Together, our findings demonstrate that PRR33 and DESMIN constitute an important regulatory module coordinating mitochondrial organization with muscle differentiation.
在肌生成过程中,细胞骨架与线粒体的协同组织对于肌肉发育和功能至关重要。我们对其潜在调控机制的理解仍不充分。在此,我们鉴定出一种新的肌肉富集蛋白PRR33,它在肌生成过程中上调并作为一种促肌生成因子发挥作用。在C2C12细胞中敲低Prr33会抑制成肌细胞分化。在小鼠中基因敲除Prr33会减小肌纤维尺寸并降低肌肉力量。Prr33突变小鼠在受伤后还表现出肌生成受损和肌肉再生缺陷。相互作用组和转录组分析表明PRR33调节细胞骨架和线粒体功能。值得注意的是,PRR33与结蛋白相互作用,结蛋白是肌肉细胞中细胞骨架 - 线粒体组织的关键调节因子。在肌细胞中敲除PRR33会显著消除结蛋白丝与线粒体的相互作用,导致结蛋白在细胞内异常积累以及肌纤维中线粒体紊乱/功能障碍。总之,我们的研究结果表明PRR33和结蛋白构成了一个重要的调节模块,协调线粒体组织与肌肉分化。