Schaefer Rachel M, Heasley Lydia R, Odde David J, McMurray Michael A
a Department of Cell and Developmental Biology , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.
b Department of Biomedical Engineering , University of Minnesota , Minneapolis , MN , USA.
Cell Cycle. 2016 Sep 16;15(18):2441-53. doi: 10.1080/15384101.2016.1196304. Epub 2016 Jul 11.
Septin proteins form highly conserved cytoskeletal filaments composed of hetero-oligomers with strict subunit stoichiometry. Mutations within one hetero-oligomerization interface (the "G" interface) bias the mutant septin toward conformations that are incompatible with filament assembly, causing disease in humans and, in budding yeast cells, temperature-sensitive defects in cytokinesis. We previously found that, when the amount of other hetero-oligomerization partners is limiting, wild-type and G interface-mutant alleles of a given yeast septin "compete" along parallel but distinct folding pathways for occupancy of a limited number of positions within septin hetero-octamers. Here, we synthesize a mathematical model that outlines the requirements for this phenomenon: if a wild-type septin traverses a folding pathway that includes a single rate-limiting folding step, the acquisition by a mutant septin of additional slow folding steps creates an initially large disparity between wild-type and mutant in the cellular concentrations of oligomerization-competent monomers. When the 2 alleles are co-expressed, this kinetic disparity results in mutant exclusion from hetero-oligomers, even when the folded mutant monomer is oligomerization-competent. To test this model experimentally, we first visualize the kinetic delay in mutant oligomerization in living cells, and then narrow or widen the "window of opportunity" for mutant septin oligomerization by altering the length of the G1 phase of the yeast cell cycle, and observe the predicted exacerbation or suppression, respectively, of mutant cellular phenotypes. These findings reveal a fundamental kinetic principle governing in vivo assembly of multiprotein complexes, independent of the ability of the subunits to associate with each other.
Septin蛋白形成高度保守的细胞骨架细丝,由具有严格亚基化学计量的异源寡聚体组成。一个异源寡聚化界面(“G”界面)内的突变会使突变的septin倾向于形成与细丝组装不相容的构象,从而导致人类疾病,并且在出芽酵母细胞中导致细胞分裂的温度敏感缺陷。我们先前发现,当其他异源寡聚化伙伴的数量有限时,给定酵母septin的野生型和G界面突变等位基因会沿着平行但不同的折叠途径“竞争”,以占据septin异源八聚体内有限数量的位置。在这里,我们构建了一个数学模型,概述了这一现象的要求:如果野生型septin穿过一条包括单个限速折叠步骤的折叠途径,那么突变septin获得额外的慢折叠步骤会在具有寡聚化能力的单体的细胞浓度中,在野生型和突变体之间产生最初很大的差异。当这两个等位基因共表达时,这种动力学差异会导致突变体被排除在异源寡聚体之外,即使折叠后的突变单体具有寡聚化能力。为了通过实验验证这个模型,我们首先在活细胞中观察突变体寡聚化的动力学延迟,然后通过改变酵母细胞周期G1期的长度来缩小或扩大突变septin寡聚化的“机会窗口”,并分别观察到突变体细胞表型的预测加剧或抑制。这些发现揭示了一个控制多蛋白复合物体内组装的基本动力学原理,与亚基相互结合的能力无关。