Ullman Andrew M, Brown Jonathan W, Foster Michael E, Léonard François, Leong Kirsty, Stavila Vitalie, Allendorf Mark D
Chemistry, Combustion, and Materials Center, Sandia National Laboratories , Livermore, California 94551, United States.
Inorg Chem. 2016 Aug 1;55(15):7233-49. doi: 10.1021/acs.inorgchem.6b00909. Epub 2016 Jul 11.
As the world transitions from fossil fuels to clean energy sources in the coming decades, many technological challenges will require chemists and material scientists to develop new materials for applications related to energy conversion, storage, and efficiency. Because of their unprecedented adaptability, metal-organic frameworks (MOFs) will factor strongly in this portfolio. By utilizing the broad synthetic toolkit provided by the fields of organic and inorganic chemistry, MOF pores can be customized to suit a particular application. Of particular importance is the ability to tune the strength of the interaction between the MOF pores and guest molecules. By cleverly controlling these MOF-guest interactions, the chemist may impart new function into the Guest@MOF materials otherwise lacking in vacant MOF. Herein, we highlight the concept of the Guest@MOF as it relates to our efforts to develop these materials for energy-related applicatons. Our work in the areas of H2 and noble gas storage, hydrogenolysis of biomass, light-harvesting, and conductive materials will be discussed. Of relevance to light-harvesting applications, we report for the first time a postsynthetic modification strategy for increasing the loading of a light-sensitive electron-donor molecule in the pores of a functionalized MIL-101 structure. Through the demonstrated versatility of these approaches, we show that, by treating guest molecules as integral design elements for new MOF constructs, MOF science can have a significant impact on the advancement of clean energy technologies.
在未来几十年,随着世界从化石燃料向清洁能源转型,诸多技术挑战将需要化学家和材料科学家开发与能量转换、存储及效率相关应用的新材料。由于金属有机框架(MOF)具有前所未有的适应性,它将在这一系列新材料中发挥重要作用。通过利用有机化学和无机化学领域提供的广泛合成工具包,可以定制MOF的孔以适应特定应用。特别重要的是调节MOF孔与客体分子之间相互作用强度的能力。通过巧妙地控制这些MOF - 客体相互作用,化学家可以赋予客体@MOF材料新功能,而这些功能在空的MOF中原本是不存在的。在此,我们着重介绍客体@MOF的概念,因为它与我们为能源相关应用开发这些材料的努力相关。我们将讨论在氢气和稀有气体存储、生物质的氢解、光捕获和导电材料等领域的工作。与光捕获应用相关的是,我们首次报道了一种后合成修饰策略,用于增加功能化MIL - 101结构孔中光敏电子供体分子的负载量。通过展示这些方法的多功能性,我们表明,将客体分子视为新型MOF结构的不可或缺的设计元素,MOF科学可以对清洁能源技术的进步产生重大影响。