Suppr超能文献

柱状 DNA 纳米管的纳米结构和弹性。

Nanoscale Structure and Elasticity of Pillared DNA Nanotubes.

机构信息

Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore 560012, India.

Department of Biotechnology, Indian Institute of Technology Madras , Chennai 600 036, India.

出版信息

ACS Nano. 2016 Aug 23;10(8):7780-91. doi: 10.1021/acsnano.6b03360. Epub 2016 Jul 26.

Abstract

We present an atomistic model of pillared DNA nanotubes (DNTs) and their elastic properties which will facilitate further studies of these nanotubes in several important nanotechnological and biological applications. In particular, we introduce a computational design to create an atomistic model of a 6-helix DNT (6HB) along with its two variants, 6HB flanked symmetrically with two double helical DNA pillars (6HB+2) and 6HB flanked symmetrically by three double helical DNA pillars (6HB+3). Analysis of 200 ns all-atom simulation trajectories in the presence of explicit water and ions shows that these structures are stable and well behaved in all three geometries. Hydrogen bonding is well maintained for all variants of 6HB DNTs. From the equilibrium bending angle distribution, we calculate the persistence lengths of these tubes. The measured persistence lengths of these nanotubes are ∼10 μm, which is 2 orders of magnitude larger than that of dsDNA. We also find a gradual increase of persistence length with an increasing number of pillars, in quantitative agreement with previous experimental findings. To have a quantitative understanding of the stretch modulus of these tubes, we carried out nonequilibrium steered molecular dynamics (SMD). The linear part of the force-extension plot gives a stretch modulus in the range 6500 pN for 6HB without pillars, which increases to 11 000 pN for tubes with three pillars. The values of the stretch modulus calculated using contour length distribution obtained from equilibrium MD simulations are similar to those obtained from nonequilibrium SMD simulations. The addition of pillars makes these DNTs very rigid.

摘要

我们提出了一种柱状 DNA 纳米管(DNT)的原子模型及其弹性性质,这将有助于进一步研究这些纳米管在几个重要的纳米技术和生物学应用中的应用。特别是,我们引入了一种计算设计来创建一个 6 螺旋 DNA 纳米管(6HB)及其两种变体的原子模型,6HB 两侧对称地排列着两个双链 DNA 支柱(6HB+2)和 6HB 两侧对称地排列着三个双链 DNA 支柱(6HB+3)。在存在显式水和离子的情况下,对 200 ns 全原子模拟轨迹进行分析表明,这些结构在所有三种几何形状下都是稳定和良好的。对于 6HB DNT 的所有变体,氢键都得到了很好的保持。从平衡弯曲角分布,我们计算了这些管的持久长度。这些纳米管的测量持久长度约为 10 µm,比 dsDNA 大 2 个数量级。我们还发现,随着支柱数量的增加,持久长度逐渐增加,与以前的实验结果定量一致。为了对这些管的拉伸模量有一个定量的理解,我们进行了非平衡导向分子动力学(SMD)。力-伸长图的线性部分给出了无支柱 6HB 的拉伸模量在 6500 pN 范围内,而带有三个支柱的管的拉伸模量增加到 11 000 pN。使用从平衡 MD 模拟获得的轮廓长度分布计算的拉伸模量值与从非平衡 SMD 模拟获得的拉伸模量值相似。支柱的添加使这些 DNT 非常刚性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验