Suppr超能文献

电荷中和驱动 DNA 纳米管的形状重构。

Charge Neutralization Drives the Shape Reconfiguration of DNA Nanotubes.

机构信息

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.

Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.

出版信息

Angew Chem Int Ed Engl. 2018 May 4;57(19):5418-5422. doi: 10.1002/anie.201801498. Epub 2018 Mar 26.

Abstract

Reconfiguration of membrane protein channels for gated transport is highly regulated under physiological conditions. However, a mechanistic understanding of such channels remains challenging owing to the difficulty in probing subtle gating-associated structural changes. Herein, we show that charge neutralization can drive the shape reconfiguration of a biomimetic 6-helix bundle DNA nanotube (6HB). Specifically, 6HB adopts a compact state when its charge is neutralized by Mg ; whereas Na switches it to the expanded state, as revealed by MD simulations, small-angle X-ray scattering (SAXS), and FRET characterization. Furthermore, partial neutralization of the DNA backbone charges by chemical modification renders 6HB compact and insensitive to ions, suggesting an interplay between electrostatic and hydrophobic forces in the channels. This system provides a platform for understanding the structure-function relationship of biological channels and designing rules for the shape control of DNA nanostructures in biomedical applications.

摘要

在生理条件下,膜蛋白通道的门控运输的重排受到高度调控。然而,由于探测细微的门控相关结构变化具有挑战性,因此对这种通道的机制理解仍然具有挑战性。本文中,我们展示了电荷中和可以驱动仿生 6 螺旋束 DNA 纳米管(6HB)的形状重排。具体而言,当 6HB 的电荷被 Mg 中和时,其采用紧凑状态;而 Na 将其切换到扩展状态,这通过 MD 模拟、小角 X 射线散射(SAXS)和 FRET 特性揭示。此外,通过化学修饰部分中和 DNA 骨架电荷,使得 6HB 紧凑且对离子不敏感,这表明在通道中静电和疏水相互作用之间存在相互作用。该系统为理解生物通道的结构-功能关系以及在生物医学应用中设计 DNA 纳米结构的形状控制规则提供了一个平台。

相似文献

1
Charge Neutralization Drives the Shape Reconfiguration of DNA Nanotubes.
Angew Chem Int Ed Engl. 2018 May 4;57(19):5418-5422. doi: 10.1002/anie.201801498. Epub 2018 Mar 26.
2
In-Situ Configuration Studies on Segmented DNA Origami Nanotubes.
Chembiochem. 2019 Jun 14;20(12):1508-1513. doi: 10.1002/cbic.201800727. Epub 2019 Apr 15.
3
Design and characterization of 1D nanotubes and 2D periodic arrays self-assembled from DNA multi-helix bundles.
J Am Chem Soc. 2012 Jan 25;134(3):1606-16. doi: 10.1021/ja207976q. Epub 2012 Jan 17.
5
Determining the Locations of Ions and Water around DNA from X-Ray Scattering Measurements.
Biophys J. 2015 Jun 16;108(12):2886-95. doi: 10.1016/j.bpj.2015.05.006.
7
Enzymatic Degradation of DNA Probed by X-ray Scattering.
ACS Nano. 2019 Oct 22;13(10):11382-11391. doi: 10.1021/acsnano.9b04752. Epub 2019 Sep 18.
8
Gating-like Motions and Wall Porosity in a DNA Nanopore Scaffold Revealed by Molecular Simulations.
ACS Nano. 2015 Nov 24;9(11):11209-17. doi: 10.1021/acsnano.5b06357. Epub 2015 Oct 30.
9
Biomimetic DNA Nanotubes: Nanoscale Channel Design and Applications.
Angew Chem Int Ed Engl. 2019 Jul 1;58(27):8996-9011. doi: 10.1002/anie.201807779. Epub 2019 Apr 4.
10
Nanoscale Structure and Elasticity of Pillared DNA Nanotubes.
ACS Nano. 2016 Aug 23;10(8):7780-91. doi: 10.1021/acsnano.6b03360. Epub 2016 Jul 26.

引用本文的文献

1
DNA Framework Programmed Conformational Reconstruction of Antibody Complementary Determining Region.
JACS Au. 2023 Sep 28;3(10):2709-2714. doi: 10.1021/jacsau.3c00492. eCollection 2023 Oct 23.
2
DNA Assembly-Based Stimuli-Responsive Systems.
Adv Sci (Weinh). 2021 May 14;8(13):2100328. doi: 10.1002/advs.202100328. eCollection 2021 Jul.
3
Hydrophobic Interactions between DNA Duplexes and Synthetic and Biological Membranes.
J Am Chem Soc. 2021 Jun 9;143(22):8305-8313. doi: 10.1021/jacs.0c13235. Epub 2021 May 20.

本文引用的文献

1
Nanoscale Structure and Elasticity of Pillared DNA Nanotubes.
ACS Nano. 2016 Aug 23;10(8):7780-91. doi: 10.1021/acsnano.6b03360. Epub 2016 Jul 26.
2
Conformational Changes and Flexibility of DNA Devices Observed by Small-Angle X-ray Scattering.
Nano Lett. 2016 Aug 10;16(8):4871-9. doi: 10.1021/acs.nanolett.6b01338. Epub 2016 Jul 27.
3
The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC): IUPHAR Review 19.
Br J Pharmacol. 2016 Sep;173(18):2671-701. doi: 10.1111/bph.13533. Epub 2016 Aug 10.
4
Shape and Interhelical Spacing of DNA Origami Nanostructures Studied by Small-Angle X-ray Scattering.
Nano Lett. 2016 Jul 13;16(7):4282-7. doi: 10.1021/acs.nanolett.6b01335. Epub 2016 Jun 8.
5
Molecular mechanisms of STIM/Orai communication.
Am J Physiol Cell Physiol. 2016 Apr 15;310(8):C643-62. doi: 10.1152/ajpcell.00007.2016. Epub 2016 Jan 28.
6
A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane.
Nat Nanotechnol. 2016 Feb;11(2):152-6. doi: 10.1038/nnano.2015.279. Epub 2016 Jan 11.
7
Molecular Dynamics of Membrane-Spanning DNA Channels: Conductance Mechanism, Electro-Osmotic Transport, and Mechanical Gating.
J Phys Chem Lett. 2015 Dec 3;6(23):4680-7. doi: 10.1021/acs.jpclett.5b01964. Epub 2015 Nov 12.
8
Structure, stability and elasticity of DNA nanotubes.
Phys Chem Chem Phys. 2015 Jan 14;17(2):1424-34. doi: 10.1039/c4cp04547e. Epub 2014 Nov 27.
9
Global structural changes of an ion channel during its gating are followed by ion mobility mass spectrometry.
Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17170-5. doi: 10.1073/pnas.1413118111. Epub 2014 Nov 17.
10
Silica biomineralization via the self-assembly of helical biomolecules.
Adv Mater. 2015 Jan 21;27(3):479-97. doi: 10.1002/adma.201401485. Epub 2014 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验