College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China.
Anal Chem. 2016 Aug 2;88(15):7523-9. doi: 10.1021/acs.analchem.6b00664. Epub 2016 Jul 22.
DNA glycosylase is an initiating enzyme of cellular base excision repair pathway which is responsible for the repair of various DNA lesions and the maintenance of genomic stability, and the dysregulation of DNA glycosylase activity is associated with a variety of human pathology. Accurate detection of DNA glycosylase activity is critical to both clinical diagnosis and therapeutics, but conventional methods for the DNA glycosylase assay are usually time-consuming with poor sensitivity. Here, we demonstrate the base-excision-repair-induced construction of a single quantum dot (QD)-based sensor for highly sensitive measurement of DNA glycosylase activity. We use human 8-oxoguanine-DNA glycosylase 1 (hOGG1), which is responsible for specifically repairing the damaged 8-hydroxyguanine (8-oxoG, one of the most abundant and widely studied DNA damage products), as a model DNA glycosylase. In the presence of biotin-labeled DNA substrate, the hOGG1 may catalyze the removal of 8-oxo G from 8-oxoG·C base pairs to generate an apurinic/apyrimidinic (AP) site. With the assistance of apurinic/apyrimidinic endonuclease (APE1), the cleavage of the AP site results in the generation of a single-nucleotide gap. Subsequently, DNA polymerase β incorporates a Cy5-labeled dGTP into the DNA substrate to fill the gap. With the addition of streptavidin-coated QDs, a QD-DNA-Cy5 nanostructure is formed via specific biotin-streptavidin binding, inducing the occurrence of fluorescence resonance energy transfer (FRET) from the QD to Cy5. The resulting Cy5 signal can be simply monitored by total internal reflection fluorescence (TIRF) imaging. The proposed method enables highly sensitive measurement of hOGG1 activity with a detection limit of 1.8 × 10(-6) U/μL. Moreover, it can be used to measure the enzyme kinetic parameters and detect the hOGG1 activity in crude cell extracts, offering a powerful tool for biomedical research and clinical diagnosis.
DNA 糖苷酶是细胞碱基切除修复途径的起始酶,负责修复各种 DNA 损伤和维持基因组稳定性,DNA 糖苷酶活性的失调与多种人类病理学有关。准确检测 DNA 糖苷酶活性对临床诊断和治疗都至关重要,但传统的 DNA 糖苷酶检测方法通常耗时且灵敏度较差。在这里,我们展示了基于碱基切除修复的构建单量子点 (QD) 传感器,用于高度灵敏地测量 DNA 糖苷酶活性。我们使用负责特异性修复受损 8-羟基鸟嘌呤 (8-oxoG,最丰富和研究最广泛的 DNA 损伤产物之一) 的人 8-氧鸟嘌呤-DNA 糖苷酶 1 (hOGG1) 作为模型 DNA 糖苷酶。在存在生物素标记的 DNA 底物的情况下,hOGG1 可以催化从 8-oxoG·C 碱基对中去除 8-oxoG,以生成无嘌呤/无嘧啶 (AP) 位点。在无嘌呤/无嘧啶内切酶 (APE1) 的协助下,AP 位点的切割导致产生单核苷酸缺口。随后,DNA 聚合酶 β 将 Cy5 标记的 dGTP 掺入 DNA 底物中以填充缺口。加入链霉亲和素包被的 QD 后,通过特异性生物素-链霉亲和素结合形成 QD-DNA-Cy5 纳米结构,诱导来自 QD 到 Cy5 的荧光共振能量转移 (FRET) 的发生。可以通过全内反射荧光 (TIRF) 成像简单地监测所得的 Cy5 信号。该方法能够以 1.8×10(-6) U/μL 的检测限高度灵敏地测量 hOGG1 活性。此外,它可用于测量粗细胞提取物中的酶动力学参数和检测 hOGG1 活性,为生物医学研究和临床诊断提供了有力工具。