Suppr超能文献

前列腺癌细胞中的神经元转分化

Neuronal Trans-Differentiation in Prostate Cancer Cells.

作者信息

Farach Andrew, Ding Yi, Lee MinJae, Creighton Chad, Delk Nikki A, Ittmann Michael, Miles Brian, Rowley David, Farach-Carson Mary C, Ayala Gustavo E

机构信息

Division of Radiation Oncology, Department of Radiology, Baylor College of Medicine, Houston, Texas.

Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, Texas.

出版信息

Prostate. 2016 Oct;76(14):1312-25. doi: 10.1002/pros.23221. Epub 2016 Jul 12.

Abstract

BACKGROUND

Neuroendocrine (NE) differentiation in prostate cancer (PCa) is an aggressive phenotype associated with therapy resistance. The complete phenotype of these cells is poorly understood. Clinical classification is based predominantly on the expression of standard NE markers.

METHODS

We analyzed the phenotype of NE carcinoma of the prostate utilizing in vitro methods, in silico, and immunohistochemical analyses of human disease.

RESULTS

LNCaP cells, subjected to a variety of stressors (0.1% [v/v] fetal bovine serum, cyclic AMP) induced a reproducible phenotype consistent with neuronal trans-differentiation. Cells developed long cytoplasmic processes resembling neurons. As expected, serum deprived cells had decreased expression in androgen receptor and prostate specific antigen. A significant increase in neuronal markers also was observed. Gene array analysis demonstrated that LNCaP cells subjected to low serum or cAMP showed statistically significant manifestation of a human brain gene expression signature. In an in silico experiment using human data, we identified that only hormone resistant metastatic prostate cancer showed enrichment of the "brain profile." Gene ontology analysis demonstrated categories involved in neuronal differentiation. Three neuronal markers were validated in a large human tissue cohort.

CONCLUSION

This study proposes that the later stages of PCa evolution involves neuronal trans-differentiation, which would enable PCa cells to acquire independence from the neural axis, critical in primary tumors. Prostate 76:1312-1325, 2016. © 2016 Wiley Periodicals, Inc.

摘要

背景

前列腺癌(PCa)中的神经内分泌(NE)分化是一种与治疗抵抗相关的侵袭性表型。这些细胞的完整表型尚不清楚。临床分类主要基于标准NE标志物的表达。

方法

我们利用体外方法、计算机分析和人类疾病的免疫组织化学分析,对前列腺NE癌的表型进行了分析。

结果

LNCaP细胞在受到多种应激源(0.1%[v/v]胎牛血清、环磷酸腺苷)作用后,诱导出一种与神经元转分化一致的可重复表型。细胞长出了类似于神经元的长细胞质突起。正如预期的那样,血清剥夺的细胞中雄激素受体和前列腺特异性抗原的表达降低。同时还观察到神经元标志物有显著增加。基因阵列分析表明,低血清或环磷酸腺苷处理的LNCaP细胞显示出人脑基因表达特征的统计学显著表现。在一项使用人类数据的计算机实验中,我们发现只有激素抵抗性转移性前列腺癌表现出“脑图谱”的富集。基因本体分析显示了与神经元分化相关的类别。在一个大型人类组织队列中验证了三种神经元标志物。

结论

本研究提出,PCa演变的后期阶段涉及神经元转分化,这将使PCa细胞能够从神经轴获得独立性,这在原发性肿瘤中至关重要。《前列腺》76:1312 - 1325,2016年。©2016威利期刊公司。

相似文献

1
Neuronal Trans-Differentiation in Prostate Cancer Cells.
Prostate. 2016 Oct;76(14):1312-25. doi: 10.1002/pros.23221. Epub 2016 Jul 12.
2
Multipathways for transdifferentiation of human prostate cancer cells into neuroendocrine-like phenotype.
Biochim Biophys Acta. 2001 May 28;1539(1-2):28-43. doi: 10.1016/s0167-4889(01)00087-8.
8
Androgen receptor represses the neuroendocrine transdifferentiation process in prostate cancer cells.
Mol Endocrinol. 2003 Sep;17(9):1726-37. doi: 10.1210/me.2003-0031. Epub 2003 May 29.
9
Isoform 1 of TPD52 (PC-1) promotes neuroendocrine transdifferentiation in prostate cancer cells.
Tumour Biol. 2016 Aug;37(8):10435-46. doi: 10.1007/s13277-016-4925-1. Epub 2016 Feb 5.

引用本文的文献

1
Nerve-to-cancer transfer of mitochondria during cancer metastasis.
Nature. 2025 Jun 25. doi: 10.1038/s41586-025-09176-8.
3
Remarks on Selected Morphological Aspects of Cancer Neuroscience: A Microscopic Photo Review.
Biomedicines. 2024 Oct 14;12(10):2335. doi: 10.3390/biomedicines12102335.
6
Evolvability of cancer-associated genes under APOBEC3A/B selection.
iScience. 2024 Mar 6;27(4):109433. doi: 10.1016/j.isci.2024.109433. eCollection 2024 Apr 19.
7
Understanding the role of Pax5 in development of taxane-resistant neuroendocrine like prostate cancers.
Res Sq. 2023 Dec 11:rs.3.rs-3464475. doi: 10.21203/rs.3.rs-3464475/v1.
8
Evolvability of cancer-associated genes under APOBEC3A/B selection.
bioRxiv. 2023 Dec 5:2023.08.27.554991. doi: 10.1101/2023.08.27.554991.
9
Pan-cancer molecular subtypes of metastasis reveal distinct and evolving transcriptional programs.
Cell Rep Med. 2023 Feb 21;4(2):100932. doi: 10.1016/j.xcrm.2023.100932. Epub 2023 Feb 1.
10
Understanding and modeling nerve-cancer interactions.
Dis Model Mech. 2023 Jan 1;16(1). doi: 10.1242/dmm.049729. Epub 2023 Jan 9.

本文引用的文献

3
Current and emerging treatment modalities for metastatic castration-resistant prostate cancer.
BJU Int. 2011 Apr;107 Suppl 2:13-20. doi: 10.1111/j.1464-410X.2010.10036.x.
6
The relationship of neuroendocrine carcinomas to anti-tumor therapies in TRAMP mice.
Prostate. 2009 Dec 1;69(16):1763-73. doi: 10.1002/pros.21026.
7
Cancer-related axonogenesis and neurogenesis in prostate cancer.
Clin Cancer Res. 2008 Dec 1;14(23):7593-603. doi: 10.1158/1078-0432.CCR-08-1164.
8
Mechanisms of prostate atrophy after glandular botulinum neurotoxin type a injection: an experimental study in the rat.
Eur Urol. 2009 Jul;56(1):134-40. doi: 10.1016/j.eururo.2008.07.003. Epub 2008 Jul 15.
9
A Caenorhabditis elegans model for epithelial-neuronal transdifferentiation.
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3790-5. doi: 10.1073/pnas.0712159105. Epub 2008 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验