Suppr超能文献

具有空间调制非线性的原子分子玻色-爱因斯坦凝聚体中的局域空间非线性物质波。

Localized spatially nonlinear matter waves in atomic-molecular Bose-Einstein condensates with space-modulated nonlinearity.

机构信息

Department of Applied Mathematics, China Agricultural University, Beijing 100083, People's Republic of China.

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.

出版信息

Sci Rep. 2016 Jul 12;6:29566. doi: 10.1038/srep29566.

Abstract

The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomic-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number n, and the numbers of the density packets for each quantum state depend on both the principal quantum number n and the secondary quantum number l. When the coupling is not zero, the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number n, only depend on the secondary quantum number l. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number n, while the stability of the rational solutions depends on the chemical potential and Raman detuning.

摘要

内秉非线性是玻色-爱因斯坦凝聚(Bose-Einstein condensates,BECs)系统最显著的特征。已有许多关于具有时变和空间变非线性的原子 BECs 的研究,但考虑具有空间变非线性的原子-分子 BECs 的研究较少。在这里,我们获得了具有囚禁势和空间变非线性的原子-分子 BECs 的两类 Jacobi 椭圆解和一族有理解,并考虑了三体相互作用对局域物质波解的影响。分析了无耦合时局域非线性物质波的拓扑性质:非线性物质波函数的奇偶性仅取决于主量子数 n,每个量子态的密度包的数量取决于主量子数 n 和次量子数 l。当耦合不为零时,有理函数给出的局域非线性物质波的拓扑性质与主量子数 n 无关,仅取决于次量子数 l。拉曼失谐和化学势可以改变密度包的数量和形状。Jacobi 椭圆解的稳定性取决于主量子数 n,而有理解的稳定性取决于化学势和拉曼失谐。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4b3/4941720/a829c04e1a8d/srep29566-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验