Suppr超能文献

视黄酸诱导胚胎干细胞分化过程中激活的基因调控元件的预测与验证

Prediction and Validation of Gene Regulatory Elements Activated During Retinoic Acid Induced Embryonic Stem Cell Differentiation.

作者信息

Simandi Zoltan, Horvath Attila, Nagy Peter, Nagy Laszlo

机构信息

Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona.

Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen.

出版信息

J Vis Exp. 2016 Jun 21(112):53978. doi: 10.3791/53978.

Abstract

Embryonic development is a multistep process involving activation and repression of many genes. Enhancer elements in the genome are known to contribute to tissue and cell-type specific regulation of gene expression during the cellular differentiation. Thus, their identification and further investigation is important in order to understand how cell fate is determined. Integration of gene expression data (e.g., microarray or RNA-seq) and results of chromatin immunoprecipitation (ChIP)-based genome-wide studies (ChIP-seq) allows large-scale identification of these regulatory regions. However, functional validation of cell-type specific enhancers requires further in vitro and in vivo experimental procedures. Here we describe how active enhancers can be identified and validated experimentally. This protocol provides a step-by-step workflow that includes: 1) identification of regulatory regions by ChIP-seq data analysis, 2) cloning and experimental validation of putative regulatory potential of the identified genomic sequences in a reporter assay, and 3) determination of enhancer activity in vivo by measuring enhancer RNA transcript level. The presented protocol is detailed enough to help anyone to set up this workflow in the lab. Importantly, the protocol can be easily adapted to and used in any cellular model system.

摘要

胚胎发育是一个涉及许多基因激活和抑制的多步骤过程。已知基因组中的增强子元件在细胞分化过程中有助于基因表达的组织和细胞类型特异性调控。因此,对其进行鉴定和进一步研究对于理解细胞命运的决定方式非常重要。整合基因表达数据(如微阵列或RNA测序)和基于染色质免疫沉淀(ChIP)的全基因组研究结果(ChIP测序)能够大规模鉴定这些调控区域。然而,细胞类型特异性增强子的功能验证需要进一步的体外和体内实验步骤。在这里,我们描述了如何通过实验鉴定和验证活性增强子。本方案提供了一个逐步的工作流程,包括:1)通过ChIP测序数据分析鉴定调控区域,2)在报告基因检测中克隆并实验验证所鉴定基因组序列的假定调控潜力,3)通过测量增强子RNA转录水平在体内确定增强子活性。所提供的方案足够详细,有助于任何人在实验室中建立此工作流程。重要的是,该方案可以很容易地适用于任何细胞模型系统并在其中使用。

相似文献

2
Functional Dissection of the Enhancer Repertoire in Human Embryonic Stem Cells.
Cell Stem Cell. 2018 Aug 2;23(2):276-288.e8. doi: 10.1016/j.stem.2018.06.014. Epub 2018 Jul 19.
3
Enhancer activity-based identification of functional enhancers using zebrafish embryos.
Genomics. 2016 Aug;108(2):102-7. doi: 10.1016/j.ygeno.2016.05.005. Epub 2016 May 30.
5
Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells.
Circ Res. 2017 Nov 10;121(11):1237-1250. doi: 10.1161/CIRCRESAHA.117.311367. Epub 2017 Oct 13.
6
7
Integrated microarray and ChIP analysis identifies multiple Foxa2 dependent target genes in the notochord.
Dev Biol. 2011 Dec 15;360(2):415-25. doi: 10.1016/j.ydbio.2011.10.002. Epub 2011 Oct 8.
8
Assessing genome-wide dynamic changes in enhancer activity during early mESC differentiation by FAIRE-STARR-seq.
Nucleic Acids Res. 2021 Dec 2;49(21):12178-12195. doi: 10.1093/nar/gkab1100.
9
Identification of Transcribed Enhancers by Genome-Wide Chromatin Immunoprecipitation Sequencing.
Methods Mol Biol. 2017;1468:91-109. doi: 10.1007/978-1-4939-4035-6_8.
10

引用本文的文献

1
Feedback regulation of retinaldehyde reductase DHRS3, a critical determinant of retinoic acid homeostasis.
FEBS Lett. 2025 Feb;599(3):340-351. doi: 10.1002/1873-3468.15038. Epub 2024 Oct 17.
2
3
Acetylated histone variant H2A.Z is involved in the activation of neo-enhancers in prostate cancer.
Nat Commun. 2017 Nov 7;8(1):1346. doi: 10.1038/s41467-017-01393-8.

本文引用的文献

1
The promise of enhancer-associated long noncoding RNAs in cardiac regeneration.
Trends Cardiovasc Med. 2015 Oct;25(7):592-602. doi: 10.1016/j.tcm.2015.01.014. Epub 2015 Feb 7.
2
A Sox2 distal enhancer cluster regulates embryonic stem cell differentiation potential.
Genes Dev. 2014 Dec 15;28(24):2699-711. doi: 10.1101/gad.248526.114.
4
Large-scale identification of coregulated enhancer networks in the adult human brain.
Cell Rep. 2014 Oct 23;9(2):767-79. doi: 10.1016/j.celrep.2014.09.023. Epub 2014 Oct 16.
5
The active enhancer network operated by liganded RXR supports angiogenic activity in macrophages.
Genes Dev. 2014 Jul 15;28(14):1562-77. doi: 10.1101/gad.242685.114.
6
Enhancer RNAs and regulated transcriptional programs.
Trends Biochem Sci. 2014 Apr;39(4):170-82. doi: 10.1016/j.tibs.2014.02.007. Epub 2014 Mar 24.
7
Function-based identification of mammalian enhancers using site-specific integration.
Nat Methods. 2014 May;11(5):566-71. doi: 10.1038/nmeth.2886. Epub 2014 Mar 23.
8
Distal enhancers: new insights into heart development and disease.
Trends Cell Biol. 2014 May;24(5):294-302. doi: 10.1016/j.tcb.2013.10.008. Epub 2013 Dec 7.
9
Chromatin and DNA sequences in defining promoters for transcription initiation.
Biochim Biophys Acta. 2014 Mar;1839(3):118-28. doi: 10.1016/j.bbagrm.2013.11.003. Epub 2013 Nov 22.
10
Predicting enhancer transcription and activity from chromatin modifications.
Nucleic Acids Res. 2013 Dec;41(22):10032-43. doi: 10.1093/nar/gkt826. Epub 2013 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验