Suppr超能文献

具有异质人群和随机感染率的网络上的流行病。

Epidemics on networks with heterogeneous population and stochastic infection rates.

作者信息

Bonaccorsi Stefano, Ottaviano Stefania

机构信息

Department of Mathematics, University of Trento, Via Sommarive 14, Povo 38123, Trento, Italy.

Department of Mathematics, University of Trento, Via Sommarive 14, Povo 38123, Trento, Italy; CREATE-NET, Via alla Cascata 56/d, Povo 38123, Trento, Italy.

出版信息

Math Biosci. 2016 Sep;279:43-52. doi: 10.1016/j.mbs.2016.07.002. Epub 2016 Jul 9.

Abstract

In this paper we study the diffusion of an SIS-type epidemics on a network under the presence of a random environment, that enters in the definition of the infection rates of the nodes. Accordingly, we model the infection rates in the form of independent stochastic processes. To analyze the problem, we apply a mean field approximation, which allows to get a stochastic differential equations for the probability of infection in each node, and classical tools about stability, which require to find suitable Lyapunov's functions. Here, we find conditions which guarantee, respectively, extinction and stochastic persistence of the epidemics. We show that there exists two regions, given in terms of the coefficients of the model, one where the system goes to extinction almost surely, and the other where it is stochastic permanent. These two regions are, unfortunately, not adjacent, as there is a gap between them, whose extension depends on the specific level of noise. In this last region, we perform numerical analysis to suggest the true behavior of the solution.

摘要

在本文中,我们研究了在存在随机环境的情况下,SIS型流行病在网络上的扩散情况,该随机环境进入节点感染率的定义中。相应地,我们将感染率建模为独立随机过程的形式。为了分析该问题,我们应用平均场近似,这使得我们能够得到每个节点感染概率的随机微分方程,以及关于稳定性的经典工具,这需要找到合适的李雅普诺夫函数。在这里,我们分别找到了保证流行病灭绝和随机持续存在的条件。我们表明,根据模型系数存在两个区域,一个区域中系统几乎肯定会灭绝,另一个区域中系统是随机持久的。不幸的是,这两个区域不相邻,因为它们之间存在一个间隙,其范围取决于特定的噪声水平。在最后一个区域中,我们进行数值分析以表明解的真实行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验