Tamukong Patrick K, Peiris Wadumesthrige D N, Kilina Svetlana
Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, USA.
Phys Chem Chem Phys. 2016 Jul 27;18(30):20499-510. doi: 10.1039/c6cp01665k.
Using density functional theory (DFT) and time-dependent DFT (TDDFT), we investigate the effects of carboxylate groups on the electronic and optical properties of CdSe quantum dots (QDs). We specifically focus on the mechanisms of the binding of the acetate anion to the QD surface with and without excess of Cd(2+) cations. Our calculations show that the most stable ligated conformations are those where an acetate is attached to extra Cd(2+) ion forming a [Cd(2+)(CH3COO(-))] at the QD's surface, while also accompanied by an acetate attached nearby at the surface balancing the overall neutral charge of the system. In contrast, formation of a neutral metal-acetate complex [Cd(2+)(CH3COO(-))2] at the QD surface is found to be the least energetically preferable. A strength of the QD-ligand interaction depends on the solvent, the facet of the QD to which the ligands are attached, and the binding mode - with the bridging mode found to be the most stable conformation for both acetate and cadmium acetate ligands. The cadmium acetate ligands introduce electron trap states at the edge of the conduction band - unoccupied orbitals predominately localized on Cd(2+) ion - that are extremely sensitive to the ligand position and the solvent polarity. Polar solvents like acetonitrile delocalize the electronic density over the entire system and, thus, eliminate trap states. As a result, mixed passivation of the CdSe QDs by pairs of cadmium acetate and acetate ligands provides optimal optical properties with minimal contributions of the ligand-related trap states and optically bright lowest energy transitions.
利用密度泛函理论(DFT)和含时密度泛函理论(TDDFT),我们研究了羧酸根基团对CdSe量子点(QD)电子和光学性质的影响。我们特别关注乙酸根阴离子在有和没有过量Cd(2+)阳离子情况下与量子点表面结合的机制。我们的计算表明,最稳定的连接构象是乙酸根附着在额外的Cd(2+)离子上,在量子点表面形成[Cd(2+)(CH3COO(-))],同时表面附近也附着有一个乙酸根以平衡系统的整体中性电荷。相比之下,发现在量子点表面形成中性金属 - 乙酸根络合物[Cd(2+)(CH3COO(-))2]在能量上是最不可取的。量子点 - 配体相互作用的强度取决于溶剂、配体所附着的量子点晶面以及结合模式——发现桥连模式对于乙酸根和乙酸镉配体都是最稳定的构象。乙酸镉配体在导带边缘引入电子陷阱态——未占据轨道主要定域在Cd(2+)离子上——这些陷阱态对配体位置和溶剂极性极其敏感。像乙腈这样的极性溶剂会使电子密度在整个系统中离域,从而消除陷阱态。结果,通过乙酸镉和乙酸根配体对CdSe量子点进行混合钝化可提供最佳光学性质,同时使与配体相关的陷阱态贡献最小,并使光学明亮的最低能量跃迁贡献最小。