Sun Chen, Si Jiangnan, Dong Zhewei, Deng Xiaoxu
Opt Express. 2016 May 30;24(11):11466-74. doi: 10.1364/OE.24.011466.
A dynamically wavelength tunable multispectral plasmon induced transparency (PIT) device based on graphene metamaterials, which is composed of periodically patterned graphene double layers separated by a dielectric layer, is proposed theoretically and numerically in the terahertz frequency range. Considering the near-field coupling of different graphene layers and the bright-dark mode coupling in the same graphene layer, the coupled Lorentz oscillator model is adapted to explain the physical mechanism of multispectral EIT-like responses. The simulated transmission based on the finite-difference time-domain (FDTD) solutions indicates that the shifting and depth of the EIT resonances in multiple PIT windows are controlled by different geometrical parameters and Fermi energies distributions. A design scheme with graphene integration is employed, which allows independent tuning of resonance frequencies by electrostatically changing the Fermi energies of graphene double layer. Active control of the multispectral EIT-like responses enables the proposed device to be widely applied in optical information processing as tunable sensors, switches, and filters.
理论上和数值模拟上提出了一种基于石墨烯超材料的动态波长可调谐多光谱表面等离激元诱导透明(PIT)器件,该器件由被电介质层隔开的周期性图案化石墨烯双层组成,工作在太赫兹频率范围。考虑不同石墨烯层的近场耦合以及同一石墨烯层中的亮-暗模式耦合,采用耦合洛伦兹振子模型来解释多光谱类电磁诱导透明(EIT)响应的物理机制。基于时域有限差分(FDTD)解的模拟传输表明,多个PIT窗口中EIT共振的移动和深度由不同的几何参数和费米能分布控制。采用了一种石墨烯集成的设计方案,通过静电改变石墨烯双层的费米能来独立调谐共振频率。对多光谱类EIT响应的主动控制使得所提出的器件能够作为可调谐传感器、开关和滤波器广泛应用于光信息处理中。