Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305-4045, USA.
Nat Commun. 2016 Jul 14;7:12162. doi: 10.1038/ncomms12162.
The scaling of active photonic devices to deep-submicron length scales has been hampered by the fundamental diffraction limit and the absence of materials with sufficiently strong electro-optic effects. Plasmonics is providing new opportunities to circumvent this challenge. Here we provide evidence for a solid-state electro-optical switching mechanism that can operate in the visible spectral range with an active volume of less than (5 nm)(3) or ∼10(-6) λ(3), comparable to the size of the smallest electronic components. The switching mechanism relies on electrochemically displacing metal atoms inside the nanometre-scale gap to electrically connect two crossed metallic wires forming a cross-point junction. These junctions afford extreme light concentration and display singular optical behaviour upon formation of a conductive channel. The active tuning of plasmonic antennas attached to such junctions is analysed using a combination of electrical and optical measurements as well as electron energy loss spectroscopy in a scanning transmission electron microscope.
主动光子器件的缩放已经受到基本衍射极限和缺乏具有足够强电光效应的材料的阻碍。等离子体学为规避这一挑战提供了新的机会。在这里,我们提供了证据,证明存在一种固态电光开关机制,该机制可以在可见光范围内工作,其有效体积小于(5nm)(3)或∼10(-6)λ(3),与最小的电子元件的尺寸相当。该开关机制依赖于电化学方式在纳米级间隙内移动金属原子,从而电气连接形成交叉点结的两个交叉金属线。这些结提供了极端的光集中,并在形成导电通道时显示出独特的光学行为。通过在扫描透射电子显微镜中结合电和光测量以及电子能量损失光谱,对连接到这些结的等离子体天线的主动调谐进行了分析。