Kalita Viktor M, Snarskii Andrei A, Zorinets Denis, Shamonin Mikhail
National Technical University of Ukraine "Kyiv Polytechnic Institute," Prospekt Peremohy 37, Kiev 03056, Ukraine.
Institute of Physics NAS of Ukraine, Prospekt Nauky 46, Kiev 03028, Ukraine.
Phys Rev E. 2016 Jun;93(6):062503. doi: 10.1103/PhysRevE.93.062503. Epub 2016 Jun 28.
Magnetoactive elastomers (MAEs) are composite materials comprised of micrometer-sized ferromagnetic particles in a nonmagnetic elastomer matrix. A single-particle mechanism of magnetostriction in MAEs, assuming the rotation of a soft magnetic, mechanically rigid particle with uniaxial magnetic anisotropy in magnetic fields is identified and considered theoretically within the framework of an alternative model. In this mechanism, the total magnetic anisotropy energy of the filling particles in the matrix is the sum over single particles. Matrix displacements in the vicinity of the particle and the resulting direction of the magnetization vector are calculated. The effect of matrix deformation is pronounced well if the magnetic anisotropy coefficient K is much larger than the shear modulus µ of the elastic matrix. The feasibility of the proposed magnetostriction mechanism in soft magnetoactive elastomers and gels is elucidated. The magnetic-field-induced internal stresses in the matrix lead to effects of magnetodeformation and may increase the elastic moduli of these composite materials.
磁致伸缩弹性体(MAEs)是由微米级铁磁颗粒组成的复合材料,这些颗粒分布在非磁性弹性体基质中。在一个替代模型的框架内,从理论上识别并考虑了MAEs中磁致伸缩的单粒子机制,该机制假设在磁场中具有单轴磁各向异性的软磁、机械刚性粒子会发生旋转。在这种机制中,基质中填充粒子的总磁各向异性能量是单个粒子能量的总和。计算了粒子附近的基质位移以及由此产生的磁化矢量方向。如果磁各向异性系数K远大于弹性基质的剪切模量µ,基质变形的影响就会很明显。阐明了所提出的磁致伸缩机制在软磁致伸缩弹性体和凝胶中的可行性。基质中磁场诱导的内应力会导致磁致变形效应,并可能增加这些复合材料的弹性模量。