Department of Bioengineering, Rice University , 6100 Main Street, MS 142, Houston, Texas 77005, United States.
Department of Earth Science, Rice University , 6100 Main Street, MS 126, Houston, Texas 77005, United States.
Environ Sci Technol. 2016 Aug 16;50(16):8750-9. doi: 10.1021/acs.est.6b01415. Epub 2016 Aug 1.
Traditional visual reporters of gene expression have only very limited use in soils because their outputs are challenging to detect through the soil matrix. This severely restricts our ability to study time-dependent microbial gene expression in one of the Earth's largest, most complex habitats. Here we describe an approach to report on dynamic gene expression within a microbial population in a soil under natural water levels (at and below water holding capacity) via production of methyl halides using a methyl halide transferase. As a proof-of-concept application, we couple the expression of this gas reporter to the conjugative transfer of a bacterial plasmid in a soil matrix and show that gas released from the matrix displays a strong correlation with the number of transconjugant bacteria that formed. Gas reporting of gene expression will make possible dynamic studies of natural and engineered microbes within many hard-to-image environmental matrices (soils, sediments, sludge, and biomass) at sample scales exceeding those used for traditional visual reporting.
传统的基因表达可视化报告方法在土壤中应用非常有限,因为它们的输出结果很难通过土壤基质进行检测。这极大地限制了我们在地球最大、最复杂的栖息地之一中研究微生物基因表达随时间变化的能力。在这里,我们描述了一种方法,该方法通过使用卤甲烷转移酶产生卤甲烷,报告自然水位下(在持水能力之上和之下)土壤中微生物种群内的动态基因表达。作为概念验证应用,我们将这种气体报告基因的表达与细菌质粒在土壤基质中的共轭转移相耦合,并表明从基质中释放的气体与形成的转导细菌数量之间存在很强的相关性。基因表达的气体报告将使在传统的可视化报告中使用的样本规模之外,对许多难以成像的环境基质(土壤、沉积物、污泥和生物量)中的天然和工程微生物进行动态研究成为可能。