Suppr超能文献

利用声频控制在谐振微流控网络中的流动:迈向基于手机控制的微流控芯片装置。

Flow control using audio tones in resonant microfluidic networks: towards cell-phone controlled lab-on-a-chip devices.

机构信息

Department of Bioengineering, University of Washington, Box 355061, Foege N530N, 3720 15th Ave NE, Seattle, WA 98195, USA.

Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA.

出版信息

Lab Chip. 2016 Aug 16;16(17):3260-7. doi: 10.1039/c6lc00738d.

Abstract

Fluid control remains a challenge in development of portable lab-on-a-chip devices. Here, we show that microfluidic networks driven by single-frequency audio tones create resonant oscillating flow that is predicted by equivalent electrical circuit models. We fabricated microfluidic devices with fluidic resistors (R), inductors (L), and capacitors (C) to create RLC networks with band-pass resonance in the audible frequency range available on portable audio devices. Microfluidic devices were fabricated from laser-cut adhesive plastic, and a "buzzer" was glued to a diaphragm (capacitor) to integrate the actuator on the device. The AC flowrate magnitude was measured by imaging oscillation of bead tracers to allow direct comparison to the RLC circuit model across the frequency range. We present a systematic build-up from single-channel systems to multi-channel (3-channel) networks, and show that RLC circuit models predict complex frequency-dependent interactions within multi-channel networks. Finally, we show that adding flow rectifying valves to the network creates pumps that can be driven by amplified and non-amplified audio tones from common audio devices (iPod and iPhone). This work shows that RLC circuit models predict resonant flow responses in multi-channel fluidic networks as a step towards microfluidic devices controlled by audio tones.

摘要

在便携式芯片实验室设备的开发中,流体控制仍然是一个挑战。在这里,我们展示了由单频音频信号驱动的微流控网络会产生谐振振荡流,这可以通过等效电路模型进行预测。我们制造了具有流体电阻 (R)、电感 (L) 和电容 (C) 的微流控器件,以在便携式音频设备上可用的可听频率范围内创建具有带通共振的 RLC 网络。微流控器件由激光切割的粘性塑料制成,并且将“蜂鸣器”粘接到膜片(电容器)上,从而将执行器集成到设备上。通过成像示踪珠的振荡来测量 AC 流量大小,从而可以在整个频率范围内直接与 RLC 电路模型进行比较。我们从单通道系统逐步构建到多通道(3 通道)网络,并表明 RLC 电路模型可以预测多通道网络中复杂的频率相关相互作用。最后,我们表明向网络中添加流量整流阀可以创建由来自常见音频设备(iPod 和 iPhone)的放大和非放大音频信号驱动的泵。这项工作表明,RLC 电路模型可以预测多通道流体网络中的谐振流响应,这是朝着由音频信号控制的微流控设备迈出的一步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验