Becerra Romina, Román Bárbara, Di Carlo Mariano N, Mariangelo Juan Ignacio, Salas Margarita, Sanchez Gina, Donoso Paulina, Schinella Guillermo R, Vittone Leticia, Wehrens Xander H, Mundiña-Weilenmann Cecilia, Said Matilde
Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina;
Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile;
Am J Physiol Heart Circ Physiol. 2016 Sep 1;311(3):H713-24. doi: 10.1152/ajpheart.00142.2016. Epub 2016 Jul 15.
Previous results from our laboratory showed that phosphorylation of ryanodine receptor 2 (RyR2) by Ca(2+) calmodulin-dependent kinase II (CaMKII) was a critical but not the unique event responsible for the production of reperfusion-induced arrhythmogenesis, suggesting the existence of other mechanisms cooperating in an additive way to produce these rhythm alterations. Oxidative stress is a prominent feature of ischemia/reperfusion injury. Both CaMKII and RyR2 are proteins susceptible to alteration by redox modifications. This study was designed to elucidate whether CaMKII and RyR2 redox changes occur during reperfusion and whether these changes are involved in the genesis of arrhythmias. Langendorff-perfused hearts from rats or transgenic mice with genetic ablation of CaMKII phosphorylation site on RyR2 (S2814A) were subjected to ischemia-reperfusion in the presence or absence of a free radical scavenger (mercaptopropionylglycine, MPG) or inhibitors of NADPH oxidase and nitric oxide synthase. Left ventricular contractile parameters and monophasic action potentials were recorded. Oxidation and phosphorylation of CaMKII and RyR2 were assessed. Increased oxidation of CaMKII during reperfusion had no consequences on the level of RyR2 phosphorylation. Avoiding the reperfusion-induced thiol oxidation of RyR2 with MPG produced a reduction in the number of arrhythmias and did not modify the contractile recovery. Conversely, selective prevention of S-nitrosylation and S-glutathionylation of RyR2 was associated with higher numbers of arrhythmias and impaired contractility. In S2814A mice, treatment with MPG further reduced the incidence of arrhythmias. Taken together, the results suggest that redox modification of RyR2 synergistically with CaMKII phosphorylation modulates reperfusion arrhythmias.
我们实验室之前的研究结果表明,钙调蛋白依赖性激酶II(CaMKII)介导的兰尼碱受体2(RyR2)磷酸化是再灌注诱导的心律失常发生的关键事件,但并非唯一事件,这表明存在其他机制以累加方式协同作用导致这些节律改变。氧化应激是缺血/再灌注损伤的一个显著特征。CaMKII和RyR2都是易受氧化还原修饰影响而发生改变的蛋白质。本研究旨在阐明再灌注期间CaMKII和RyR2的氧化还原变化是否发生,以及这些变化是否参与心律失常的发生。对来自大鼠或RyR2上CaMKII磷酸化位点基因敲除(S2814A)的转基因小鼠的Langendorff灌注心脏,在有或没有自由基清除剂(巯基丙酰甘氨酸,MPG)或NADPH氧化酶和一氧化氮合酶抑制剂的情况下进行缺血再灌注。记录左心室收缩参数和单相动作电位。评估CaMKII和RyR2的氧化和磷酸化情况。再灌注期间CaMKII氧化增加对RyR2磷酸化水平没有影响。用MPG避免再灌注诱导的RyR2硫醇氧化可减少心律失常的数量,且不改变收缩功能的恢复。相反,选择性预防RyR2的S-亚硝基化和S-谷胱甘肽化与更高的心律失常数量和收缩功能受损有关。在S2814A小鼠中,用MPG治疗可进一步降低心律失常的发生率。综上所述,结果表明RyR2的氧化还原修饰与CaMKII磷酸化协同调节再灌注心律失常。