Gasparini Claudia F, Smith Robert A, Griffiths Lyn R
Menzies Health Institute Queensland, Griffith University Gold Coast, Parklands Drive, Southport, QLD 4222, Australia.
Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Ave, Kelvin Grove, QLD 4059, Australia.
J Neurol Sci. 2016 Aug 15;367:258-68. doi: 10.1016/j.jns.2016.06.016. Epub 2016 Jun 9.
Migraine is a complex polygenic disorder that continues to be a great source of morbidity in the developed world with a prevalence of 12% in the Caucasian population. Genetic and pharmacological studies have implicated the glutamate pathway in migraine pathophysiology. Glutamate profoundly impacts brain circuits that regulate core symptom domains in a range of neuropsychiatric conditions and thus remains a "hot" target for drug discovery. Glutamate has been implicated in cortical spreading depression (CSD), the phenomenon responsible for migraine with aura and in animal models carrying FHM mutations. Genotyping case-control studies have shown an association between glutamate receptor genes, namely, GRIA1 and GRIA3 with migraine with indirect supporting evidence from GWAS. New evidence localizes PRRT2 at glutamatergic synapses and shows it affects glutamate signalling and glutamate receptor activity via interactions with GRIA1. Glutamate-system defects have also been recently implicated in a novel FHM2 ATP1A2 disease-mutation mouse model. Adding to the growing evidence neurophysiological findings support a role for glutamate in cortical excitability. In addition to the existence of multiple genes to choreograph the functions of fast-signalling glutamatergic neurons, glutamate receptor diversity and regulation is further increased by the post-translational mechanisms of RNA editing and miRNAs. Ongoing genetic studies, GWAS and meta-analysis implicate neurogenic mechanisms in migraine pathology and the first genome-wide associated locus for migraine on chromosome X. Finally, in addition to glutamate modulating therapies, the kynurenine pathway has emerged as a candidate for involvement in migraine pathophysiology. In this review we discuss recent genetic evidence and glutamate modulating therapies that bear on the hypothesis that a glutamatergic mechanism may be involved in migraine susceptibility.
偏头痛是一种复杂的多基因疾病,在发达国家仍然是发病的重要原因,在白种人群中的患病率为12%。遗传和药理学研究表明谷氨酸途径与偏头痛的病理生理学有关。谷氨酸对调节一系列神经精神疾病核心症状域的脑回路有深远影响,因此仍然是药物研发的“热门”靶点。谷氨酸与皮层扩散性抑制(CSD)有关,CSD是伴有先兆偏头痛的发病机制,在携带家族性偏瘫性偏头痛(FHM)突变的动物模型中也有体现。基因分型病例对照研究表明谷氨酸受体基因,即GRIA1和GRIA3与偏头痛之间存在关联,全基因组关联研究(GWAS)提供了间接支持证据。新证据表明PRRT2定位于谷氨酸能突触,并显示它通过与GRIA1相互作用影响谷氨酸信号传导和谷氨酸受体活性。谷氨酸系统缺陷最近也在一种新型的FHM2 ATP1A2疾病突变小鼠模型中被发现。越来越多的神经生理学研究结果支持谷氨酸在皮层兴奋性中起作用。除了存在多个基因来编排快速信号谷氨酸能神经元的功能外,RNA编辑和微小RNA(miRNA)的翻译后机制进一步增加了谷氨酸受体的多样性和调节。正在进行的遗传学研究、GWAS和荟萃分析表明神经源性机制参与偏头痛病理过程,并且在X染色体上发现了首个全基因组关联的偏头痛位点。最后,除了谷氨酸调节疗法外,犬尿氨酸途径也已成为参与偏头痛病理生理学的候选途径。在这篇综述中,我们讨论了最近的遗传证据和谷氨酸调节疗法,这些证据和疗法支持谷氨酸能机制可能参与偏头痛易感性的假说。