Suppr超能文献

微波消融加热模式的实验测量及与计算机模拟的比较。

Experimental measurement of microwave ablation heating pattern and comparison to computer simulations.

作者信息

Deshazer Garron, Prakash Punit, Merck Derek, Haemmerich Dieter

机构信息

a Department of Diagnostic Imaging , Rhode Island Hospital , Providence , Rhode Island , USA.

b Department of Electrical and Computer Engineering , Kansas State University , Manhattan , Kansas , USA.

出版信息

Int J Hyperthermia. 2017 Feb;33(1):74-82. doi: 10.1080/02656736.2016.1206630. Epub 2016 Jul 18.

Abstract

INTRODUCTION

For computational models of microwave ablation (MWA), knowledge of the antenna design is necessary, but the proprietary design of clinical applicators is often unknown. We characterised the specific absorption rate (SAR) during MWA experimentally and compared to a multi-physics simulation.

METHODS

An infrared (IR) camera was used to measure SAR during MWA within a split ex vivo liver model. Perseon Medical's short-tip (ST) or long-tip (LT) MWA antenna were placed on top of a tissue sample (n = 6), and microwave power (15 W) was applied for 6 min, while intermittently interrupting power. Tissue surface temperature was recorded via IR camera (3.3 fps, 320 × 240 resolution). SAR was calculated intermittently based on temperature slope before and after power interruption. Temperature and SAR data were compared to simulation results.

RESULTS

Experimentally measured SAR changed considerably once tissue temperatures exceeded 100 °C, contrary to simulation results. The ablation zone diameters were 1.28 cm and 1.30 ± 0.03 cm (transverse), and 2.10 cm and 2.66 ± -0.22 cm (axial), for simulation and experiment, respectively. The average difference in temperature between the simulation and experiment were 5.6 °C (ST) and 6.2 °C (LT). Dice coefficients for 1000 W/kg SAR iso-contour were 0.74 ± 0.01 (ST) and 0.77 (± 0.03) (LT), suggesting good agreement of SAR contours.

CONCLUSION

We experimentally demonstrated changes in SAR during MWA ablation, which were not present in simulation, suggesting inaccuracies in dielectric properties. The measured SAR may be used in simplified computer simulations to predict tissue temperature when the antenna geometry is unknown.

摘要

引言

对于微波消融(MWA)的计算模型,了解天线设计是必要的,但临床应用器的专有设计通常是未知的。我们通过实验表征了MWA过程中的比吸收率(SAR),并与多物理场模拟进行了比较。

方法

使用红外(IR)相机在离体肝脏模型中测量MWA过程中的SAR。将Perseon Medical的短尖端(ST)或长尖端(LT)MWA天线放置在组织样本顶部(n = 6),施加微波功率(15 W)6分钟,同时间歇性中断功率。通过红外相机记录组织表面温度(3.3帧/秒,320×240分辨率)。根据功率中断前后的温度斜率间歇性计算SAR。将温度和SAR数据与模拟结果进行比较。

结果

一旦组织温度超过100°C,实验测量的SAR发生了相当大的变化,这与模拟结果相反。模拟和实验的消融区直径分别为横向1.28 cm和1.30±0.03 cm,轴向2.10 cm和2.66±0.22 cm。模拟和实验之间的平均温度差分别为5.6°C(ST)和6.2°C(LT)。1000 W/kg SAR等轮廓线的骰子系数分别为0.74±0.01(ST)和0.77(±0.03)(LT),表明SAR轮廓线具有良好的一致性。

结论

我们通过实验证明了MWA消融过程中SAR的变化,这在模拟中不存在,表明介电特性存在不准确之处。当天线几何形状未知时,测量的SAR可用于简化的计算机模拟中以预测组织温度。

相似文献

1
Experimental measurement of microwave ablation heating pattern and comparison to computer simulations.
Int J Hyperthermia. 2017 Feb;33(1):74-82. doi: 10.1080/02656736.2016.1206630. Epub 2016 Jul 18.
2
Physical modeling of microwave ablation zone clinical margin variance.
Med Phys. 2016 Apr;43(4):1764. doi: 10.1118/1.4942980.
4
Temperature distribution analysis of tissue water vaporization during microwave ablation: experiments and simulations.
Int J Hyperthermia. 2012;28(7):674-85. doi: 10.3109/02656736.2012.710769. Epub 2012 Sep 4.
5
Analysis of minimally invasive directional antennas for microwave tissue ablation.
Int J Hyperthermia. 2017 Feb;33(1):51-60. doi: 10.1080/02656736.2016.1195519. Epub 2016 Jul 5.
6
Influences of blood flow parameters on temperature distribution during liver tumor microwave ablation.
Front Biosci (Landmark Ed). 2021 Sep 30;26(9):504-516. doi: 10.52586/4963.
7
The impact of frequency on the performance of microwave ablation.
Int J Hyperthermia. 2017 Feb;33(1):61-68. doi: 10.1080/02656736.2016.1207254. Epub 2016 Jul 21.
8
Experimental assessment of microwave ablation computational modeling with MR thermometry.
Med Phys. 2020 Sep;47(9):3777-3788. doi: 10.1002/mp.14318. Epub 2020 Jul 16.
9
A Directional Interstitial Antenna for Microwave Tissue Ablation: Theoretical and Experimental Investigation.
IEEE Trans Biomed Eng. 2015 Sep;62(9):2144-50. doi: 10.1109/TBME.2015.2413672. Epub 2015 Mar 16.
10
Temperature simulation of microwave ablation based on improved specific absorption rate method compared to phantom measurements.
Comput Assist Surg (Abingdon). 2017 Dec;22(sup1):9-17. doi: 10.1080/24699322.2017.1378605. Epub 2017 Sep 18.

引用本文的文献

1
Assessment of thermochromic phantoms for characterizing microwave ablation devices.
Med Phys. 2024 Nov;51(11):8442-8453. doi: 10.1002/mp.17404. Epub 2024 Sep 17.
2
Computational Modeling of Thermal Ablation Zones in the Liver: A Systematic Review.
Cancers (Basel). 2023 Dec 1;15(23):5684. doi: 10.3390/cancers15235684.
5
Use of microwave ablation for thermal treatment of solid tumors with different shapes and sizes-A computational approach.
PLoS One. 2020 Jun 15;15(6):e0233219. doi: 10.1371/journal.pone.0233219. eCollection 2020.
6
Experimental assessment of microwave ablation computational modeling with MR thermometry.
Med Phys. 2020 Sep;47(9):3777-3788. doi: 10.1002/mp.14318. Epub 2020 Jul 16.
7
Antenna Designs for Microwave Tissue Ablation.
Crit Rev Biomed Eng. 2018;46(6):495-521. doi: 10.1615/CritRevBiomedEng.2018028554.
9
CORR Insights: Is Limb Salvage With Microwave-induced Hyperthermia Better Than Amputation for Osteosarcoma of the Distal Tibia?
Clin Orthop Relat Res. 2017 Jun;475(6):1678-1680. doi: 10.1007/s11999-017-5305-x. Epub 2017 Mar 6.

本文引用的文献

2
Physical modeling of microwave ablation zone clinical margin variance.
Med Phys. 2016 Apr;43(4):1764. doi: 10.1118/1.4942980.
3
Magnetic resonance thermometry: Methodology, pitfalls and practical solutions.
Int J Hyperthermia. 2016;32(1):63-75. doi: 10.3109/02656736.2015.1108462. Epub 2015 Dec 27.
4
Hepatic Radiofrequency Ablation-induced Stimulation of Distant Tumor Growth Is Suppressed by c-Met Inhibition.
Radiology. 2016 Apr;279(1):103-17. doi: 10.1148/radiol.2015150080. Epub 2015 Sep 29.
5
Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia.
Int J Hyperthermia. 2015;31(7):737-48. doi: 10.3109/02656736.2015.1068957. Epub 2015 Sep 12.
7
Interactive multi-criteria planning for radiofrequency ablation.
Int J Comput Assist Radiol Surg. 2015 Jun;10(6):879-89. doi: 10.1007/s11548-015-1201-6. Epub 2015 Apr 23.
8
A Directional Interstitial Antenna for Microwave Tissue Ablation: Theoretical and Experimental Investigation.
IEEE Trans Biomed Eng. 2015 Sep;62(9):2144-50. doi: 10.1109/TBME.2015.2413672. Epub 2015 Mar 16.
9
Influence of the target tissue size on the shape of ex vivo microwave ablation zones.
Int J Hyperthermia. 2015 Feb;31(1):48-57. doi: 10.3109/02656736.2014.997312. Epub 2015 Feb 13.
10
Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update.
J Vasc Interv Radiol. 2014 Nov;25(11):1691-705.e4. doi: 10.1016/j.jvir.2014.08.027. Epub 2014 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验