Moses Melanie, Bezerra George, Edwards Benjamin, Brown James, Forrest Stephanie
Department of Computer Science, University of New Mexico, Albuquerque, NM, USA Department of Biology, University of New Mexico, Albuquerque, NM, USA The Santa Fe Institute, Santa Fe, NM, USA
Department of Computer Science, University of New Mexico, Albuquerque, NM, USA.
Philos Trans R Soc Lond B Biol Sci. 2016 Aug 19;371(1701). doi: 10.1098/rstb.2015.0446.
Metabolic rate in animals and power consumption in computers are analogous quantities that scale similarly with size. We analyse vascular systems of mammals and on-chip networks of microprocessors, where natural selection and human engineering, respectively, have produced systems that minimize both energy dissipation and delivery times. Using a simple network model that simultaneously minimizes energy and time, our analysis explains empirically observed trends in the scaling of metabolic rate in mammals and power consumption and performance in microprocessors across several orders of magnitude in size. Just as the evolutionary transitions from unicellular to multicellular animals in biology are associated with shifts in metabolic scaling, our model suggests that the scaling of power and performance will change as computer designs transition to decentralized multi-core and distributed cyber-physical systems. More generally, a single energy-time minimization principle may govern the design of many complex systems that process energy, materials and information.This article is part of the themed issue 'The major synthetic evolutionary transitions'.
动物的代谢率和计算机的功耗是类似的量,它们随尺寸的缩放方式相似。我们分析了哺乳动物的血管系统和微处理器的片上网络,在这些系统中,自然选择和人类工程分别产生了使能量耗散和传输时间最小化的系统。使用一个同时最小化能量和时间的简单网络模型,我们的分析解释了在跨越几个数量级的尺寸范围内,哺乳动物代谢率缩放以及微处理器功耗和性能方面的经验观察趋势。正如生物学中从单细胞动物到多细胞动物的进化转变与代谢缩放的变化相关一样,我们的模型表明,随着计算机设计向去中心化多核和分布式网络物理系统转变,功率和性能的缩放也会发生变化。更一般地说,一个单一的能量 - 时间最小化原则可能支配着许多处理能量、物质和信息的复杂系统的设计。本文是主题为“主要的合成进化转变”的特刊的一部分。