Suppr超能文献

移动性如何帮助分布式系统计算?

How does mobility help distributed systems compute?

机构信息

1 University of New Mexico , Albuquerque, NM , USA.

2 Instituto Tecnológico Autónomo de México, Mexico DF , Mexico.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2019 Jun 10;374(1774):20180375. doi: 10.1098/rstb.2018.0375.

Abstract

Brains are composed of connected neurons that compute by transmitting signals. The neurons are generally fixed in space, but the communication patterns that enable information processing change rapidly. By contrast, other biological systems, such as ant colonies, bacterial colonies, slime moulds and immune systems, process information using agents that communicate locally while moving through physical space. We refer to systems in which agents are strongly connected and immobile as solid, and to systems in which agents are not hardwired to each other and can move freely as liquid. We ask how collective computation depends on agent movement. A liquid cellular automaton (LCA) demonstrates the effect of movement and communication locality on consensus problems. A simple mathematical model predicts how these properties of the LCA affect how quickly information propagates through the system. While solid brains allow complex network structures to move information over long distances, mobility provides an alternative way for agents to transport information when long-range connectivity is expensive or infeasible. Our results show how simple mobile agents solve global information processing tasks more effectively than similar systems that are stationary. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.

摘要

大脑由通过传递信号进行计算的连接神经元组成。神经元通常固定在空间中,但能够快速改变的信息处理的通信模式。相比之下,其他生物系统,如蚁群、细菌群落、黏菌和免疫系统,使用在物理空间中移动时进行局部通信的代理来处理信息。我们将强连接且固定不动的系统称为固体,将彼此之间没有硬连线且可以自由移动的系统称为液体。我们询问集体计算如何依赖于代理的移动。一个液体细胞自动机(LCA)演示了运动和通信局部性对共识问题的影响。一个简单的数学模型预测了 LCA 的这些特性如何影响信息在系统中传播的速度。虽然固体大脑允许复杂的网络结构在长距离上移动信息,但当远程连接昂贵或不可行时,移动性为代理提供了一种传输信息的替代方法。我们的结果表明,简单的移动代理如何比类似的静止系统更有效地解决全局信息处理任务。本文是主题为“液体大脑,固体大脑:分布式认知架构如何处理信息”的一部分。

相似文献

1
How does mobility help distributed systems compute?移动性如何帮助分布式系统计算?
Philos Trans R Soc Lond B Biol Sci. 2019 Jun 10;374(1774):20180375. doi: 10.1098/rstb.2018.0375.
2
Liquid brains, solid brains.液体大脑,固体大脑。
Philos Trans R Soc Lond B Biol Sci. 2019 Jun 10;374(1774):20190040. doi: 10.1098/rstb.2019.0040.
3
Statistical physics of liquid brains.液体大脑的统计物理学。
Philos Trans R Soc Lond B Biol Sci. 2019 Jun 10;374(1774):20180376. doi: 10.1098/rstb.2018.0376.
4
Memory inception and preservation in slime moulds: the quest for a common mechanism.黏菌的记忆产生和保存:寻求共同机制。
Philos Trans R Soc Lond B Biol Sci. 2019 Jun 10;374(1774):20180368. doi: 10.1098/rstb.2018.0368.
5
Adaptive behaviour and learning in slime moulds: the role of oscillations.黏菌的适应行为和学习:振荡的作用。
Philos Trans R Soc Lond B Biol Sci. 2021 Mar 15;376(1820):20190757. doi: 10.1098/rstb.2019.0757. Epub 2021 Jan 25.
7
Modeling and hardware implementation of an amoeba-like cellular automaton.阿米巴样元胞自动机的建模与硬件实现。
Bioinspir Biomim. 2012 Sep;7(3):036013. doi: 10.1088/1748-3182/7/3/036013. Epub 2012 May 9.

引用本文的文献

2
Hunter-gatherer foraging networks promote information transmission.狩猎采集者觅食网络促进信息传播。
R Soc Open Sci. 2021 Dec 22;8(12):211324. doi: 10.1098/rsos.211324. eCollection 2021 Dec.
3
Fate of Duplicated Neural Structures.重复神经结构的命运。
Entropy (Basel). 2020 Aug 25;22(9):928. doi: 10.3390/e22090928.
4
From Microbial Communities to Distributed Computing Systems.从微生物群落到分布式计算系统。
Front Bioeng Biotechnol. 2020 Jul 22;8:834. doi: 10.3389/fbioe.2020.00834. eCollection 2020.
6
Liquid brains, solid brains.液体大脑,固体大脑。
Philos Trans R Soc Lond B Biol Sci. 2019 Jun 10;374(1774):20190040. doi: 10.1098/rstb.2019.0040.

本文引用的文献

1
Morphogenesis in robot swarms.机器人群体中的形态发生
Sci Robot. 2018 Dec 19;3(25). doi: 10.1126/scirobotics.aau9178.
4
Ant-inspired density estimation via random walks.基于随机游走的蚁群启发式密度估计。
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10534-10541. doi: 10.1073/pnas.1706439114. Epub 2017 Sep 19.
7
T cell migration, search strategies and mechanisms.T细胞迁移、搜索策略与机制。
Nat Rev Immunol. 2016 Mar;16(3):193-201. doi: 10.1038/nri.2015.16. Epub 2016 Feb 8.
8
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
9
Random diffusion and cooperation in continuous two-dimensional space.连续二维空间中的随机扩散与合作。
J Theor Biol. 2014 Mar 7;344:40-8. doi: 10.1016/j.jtbi.2013.11.018. Epub 2013 Dec 4.
10
Consensus in networks of mobile communicating agents.移动通信代理网络中的共识。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jan;85(1 Pt 2):016113. doi: 10.1103/PhysRevE.85.016113. Epub 2012 Jan 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验