Tugin Sergei, Hernandez-Pavon Julio C, Ilmoniemi Risto J, Nikulin Vadim V
Department of Neuroscience and Biomedical Engineering (NBE), Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Department of Neuroscience and Biomedical Engineering (NBE), Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Neuroimage. 2016 Nov 15;142:645-655. doi: 10.1016/j.neuroimage.2016.07.024. Epub 2016 Jul 16.
Auditory and visual deviant stimuli evoke mismatch negativity (MMN) responses, which can be recorded with electroencephalography (EEG) and magnetoencephalography (MEG). However, little is known about the role of neuronal oscillations in encoding of rare stimuli. We aimed at verifying the existence of a mechanism for the detection of deviant visual stimuli on the basis of oscillatory responses, so-called visual mismatch oscillatory response (vMOR).
Peripheral visual stimuli in an oddball paradigm, standard vs. deviant (7:1), were presented to twenty healthy subjects. The oscillatory responses to an infrequent change in the direction of moving peripheral stimuli were recorded with a 60-channel EEG system. In order to enhance the detection of oscillatory responses, we used the common spatial pattern (CSP) algorithm, designed for the optimal extraction of changes in the amplitude of oscillations.
Both standard and deviant visual stimuli produced Event-Related Desynchronization (ERD) and Synchronization (ERS) primarily in the occipito-parietal cortical areas. ERD and ERS had overlapping time-courses and peaked at about 500-730 ms. These oscillatory responses, however, were significantly stronger for the deviant than for the standard stimuli. A difference between the oscillatory responses to deviant and standard stimuli thus reflects the presence of vMOR.
The present study shows that the detection of visual deviant stimuli can be reflected in both synchronization and desynchronization of neuronal oscillations. This broadens our knowledge about the brain mechanisms encoding deviant sensory stimuli.
听觉和视觉偏差刺激会引发失匹配负波(MMN)反应,这种反应可通过脑电图(EEG)和脑磁图(MEG)进行记录。然而,关于神经元振荡在稀有刺激编码中的作用却知之甚少。我们旨在验证基于振荡反应(即所谓的视觉失匹配振荡反应,vMOR)来检测偏差视觉刺激的机制是否存在。
在一个oddball范式中,向20名健康受试者呈现外周视觉刺激,包括标准刺激与偏差刺激(比例为7:1)。使用60通道EEG系统记录对外周移动刺激方向罕见变化的振荡反应。为了增强对振荡反应的检测,我们使用了共同空间模式(CSP)算法,该算法旨在最佳提取振荡幅度的变化。
标准和偏差视觉刺激均主要在枕顶叶皮质区域产生事件相关去同步化(ERD)和同步化(ERS)。ERD和ERS具有重叠的时间进程,且在约500 - 730毫秒时达到峰值。然而,偏差刺激引发的这些振荡反应明显强于标准刺激。因此,偏差刺激与标准刺激的振荡反应差异反映了vMOR的存在。
本研究表明,视觉偏差刺激的检测可通过神经元振荡的同步化和去同步化来体现。这拓宽了我们对编码偏差感觉刺激的脑机制的认识。