Ramalingam Naveen, Warkiani Majid Ebrahimi, Ramalingam Neevan, Keshavarzi Gholamreza, Hao-Bing Liu, Hai-Qing Thomas Gong
Fluidigm Corporation, 7000 Shoreline Court, South San Francisco, CA, 94080, USA.
School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
Biomed Microdevices. 2016 Aug;18(4):68. doi: 10.1007/s10544-016-0099-2.
Capillary-driven microfluidics is essential for development of point-of-care diagnostic micro-devices. Polymerase chain reaction (PCR)-based micro-devices are widely developed and used in such point-of-care settings. It is imperative to characterize the fluid parameters of PCR solution for designing efficient capillary-driven microfluidic networks. Generally, for numeric modelling, the fluid parameters of PCR solution are approximated to that of water. This procedure leads to inaccurate results, which are discrepant to experimental data. This paper describes mathematical modeling and experimental validation of capillary-driven flow inside Poly-(dimethyl) siloxane (PDMS)-glass hybrid micro-channels. Using experimentally measured PCR fluid parameters, the capillary meniscus displacement in PDMS-glass microfluidic ladder network is simulated using computational fluid dynamic (CFD), and experimentally verified to match with the simulated data.
毛细管驱动微流控技术对于即时诊断微型设备的开发至关重要。基于聚合酶链反应(PCR)的微型设备在这种即时诊断环境中得到了广泛开发和应用。为了设计高效的毛细管驱动微流控网络,必须对PCR溶液的流体参数进行表征。通常,在数值建模中,PCR溶液的流体参数被近似为水的流体参数。这一过程会导致结果不准确,与实验数据不一致。本文描述了聚二甲基硅氧烷(PDMS)-玻璃混合微通道内毛细管驱动流动的数学建模和实验验证。利用实验测量的PCR流体参数,使用计算流体动力学(CFD)模拟了PDMS-玻璃微流控梯形网络中的毛细管弯月面位移,并通过实验验证其与模拟数据相匹配。