Villanueva Maite, Jousselin Ambre, Baek Kristoffer T, Prados Julien, Andrey Diego O, Renzoni Adriana, Ingmer Hanne, Frees Dorte, Kelley William L
Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, Geneva, Switzerland.
Department of Veterinary Disease Biology, University of Copenhagen, Frederiksburg, Denmark.
J Bacteriol. 2016 Sep 9;198(19):2719-31. doi: 10.1128/JB.00261-16. Print 2016 Oct 1.
Staphylococcus aureus is capable of causing a remarkable spectrum of disease, ranging from mild skin eruptions to life-threatening infections. The survival and pathogenic potential of S. aureus depend partly on its ability to sense and respond to changes in its environment. Spx is a thiol/oxidative stress sensor that interacts with the C-terminal domain of the RNA polymerase RpoA subunit, leading to changes in gene expression that help sustain viability under various conditions. Using genetic and deep-sequencing methods, we show that spx is essential in S. aureus and that a previously reported Δspx strain harbored suppressor mutations that allowed it to grow without spx One of these mutations is a single missense mutation in rpoB (a P-to-L change at position 519 encoded by rpoB [rpoB-P519L]) that conferred high-level resistance to rifampin. This mutation alone was found to be sufficient to bypass the requirement for spx The generation of rifampin resistance libraries led to the discovery of an additional rpoB mutation, R484H, which supported strains with the spx disruption. Other rifampin resistance mutations either failed to support the Δspx mutant or were recovered at unexpectedly low frequencies in genetic transduction experiments. The amino acid residues encoded by rpoB-P519L and -R484H map in close spatial proximity and comprise a highly conserved region of RpoB. We also discovered that multicopy expression of either trxA (encoding thioredoxin) or trxB (encoding thioredoxin reductase) supports strains with the deletion of spx Our results reveal intriguing properties, especially of RNA polymerase, that compensate for the loss of an essential gene that is a key mediator of diverse processes in S. aureus, including redox and thiol homeostasis, antibiotic resistance, growth, and metabolism.
The survival and pathogenicity of S. aureus depend on complex genetic programs. An objective for combating this insidious organism entails dissecting genetic regulatory circuits and discovering promising new targets for therapeutic intervention. In this study, we discovered that Spx, an RNA polymerase-interacting stress regulator implicated in many stress responses in S. aureus, including responses to oxidative and cell wall antibiotics, is essential. We describe two mechanisms that suppress the lethality of spx disruption. One mechanism highlights how only certain rifampin resistance-encoding alleles of RpoB confer new properties on RNA polymerase, with important mechanistic implications. We describe additional stress conditions where the loss of spx is deleterious, thereby highlighting Spx as a multifaceted regulator and attractive drug discovery target.
金黄色葡萄球菌能够引发一系列显著的疾病,从轻度皮肤疹到危及生命的感染。金黄色葡萄球菌的生存和致病潜力部分取决于其感知和响应环境变化的能力。Spx是一种硫醇/氧化应激传感器,它与RNA聚合酶RpoA亚基的C末端结构域相互作用,导致基因表达发生变化,有助于在各种条件下维持生存能力。通过遗传和深度测序方法,我们表明spx在金黄色葡萄球菌中是必不可少的,并且先前报道的Δspx菌株含有抑制突变,使其能够在没有spx的情况下生长。其中一个突变是rpoB中的单个错义突变(rpoB编码的第519位由脯氨酸变为亮氨酸[rpoB-P519L]),赋予对利福平的高水平抗性。发现仅这个突变就足以绕过对spx的需求。利福平抗性文库的产生导致发现了另一个rpoB突变R484H,它支持具有spx破坏的菌株。其他利福平抗性突变要么无法支持Δspx突变体,要么在遗传转导实验中以意外低的频率被回收。rpoB-P519L和-R484H编码的氨基酸残基在空间上紧密相邻,并且构成RpoB的高度保守区域。我们还发现trxA(编码硫氧还蛋白)或trxB(编码硫氧还蛋白还原酶)的多拷贝表达支持缺失spx的菌株。我们的结果揭示了有趣的特性,特别是RNA聚合酶的特性,其补偿了一个关键基因的缺失,该基因是金黄色葡萄球菌中多种过程的关键调节因子,包括氧化还原和硫醇稳态、抗生素抗性、生长和代谢。
金黄色葡萄球菌的生存和致病性取决于复杂的遗传程序。对抗这种隐匿性生物体的一个目标是剖析遗传调控回路并发现有前景的新治疗干预靶点。在这项研究中,我们发现Spx,一种与RNA聚合酶相互作用的应激调节因子,参与金黄色葡萄球菌的许多应激反应,包括对氧化和细胞壁抗生素的反应,是必不可少的。我们描述了两种抑制spx破坏致死性的机制。一种机制突出了只有某些RpoB的利福平抗性编码等位基因如何赋予RNA聚合酶新特性,具有重要的机制意义。我们描述了其他应激条件,其中spx的缺失是有害的,从而突出Spx作为一个多方面的调节因子和有吸引力的药物发现靶点。