Kim Hye Won, Li Hongliang, Kim Han Sol, Shin Sung Eun, Jung Won-Kyo, Ha Kwon-Soo, Han Eun-Taek, Hong Seok-Ho, Choi Il-Whan, Firth Amy L, Bang Hyoweon, Park Won Sun
Department of Physiology, Kangwon National University School of Medicine, Chuncheon 200-701, South Korea.
Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 608-737, South Korea.
Vascul Pharmacol. 2016 Sep;84:38-46. doi: 10.1016/j.vph.2016.07.005. Epub 2016 Jul 18.
We investigated the vasorelaxant effect of repaglinide and its related signaling pathways using phenylephrine (Phe)-induced pre-contracted aortic rings. Repaglinide induced vasorelaxation in a concentration-dependent manner. The repaglinide-induced vasorelaxation was not affected by removal of the endothelium. In addition, application of a nitric oxide synthase inhibitor (L-NAME) and a small-conductance Ca(2+)-activated K(+) (SKCa) channel inhibitor (apamin) did not alter the vasorelaxant effect of repaglinide on endothelium-intact arteries. Pretreatment with an adenylyl cyclase inhibitor (SQ 22536) or a PKA inhibitor (KT 5720) effectively reduced repaglinide-induced vasorelaxation. Also, pretreatment with a guanylyl cyclase inhibitor (ODQ) or a PKG inhibitor (KT 5823) inhibited repaglinide-induced vasorelaxation. However, pretreatment with a voltage-dependent K(+) (Kv) channel inhibitor (4-AP), ATP-sensitive K(+) (KATP) channel inhibitor (glibenclamide), large-conductance Ca(2+)-activated K(+) (BKCa) channel inhibitor (paxilline), or the inwardly rectifying K(+) (Kir) channel inhibitor (Ba(2+)) did not affect the vasorelaxant effect of repaglinide. Furthermore, pretreatment with a Ca(2+) inhibitor (nifedipine) and a sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor (thapsigargin) did not affect the vasorelaxant effect of repaglinide. The vasorelaxant effect of repaglinide was not affected by elevated glucose (50mM). Based on these results, we conclude that repaglinide induces vasorelaxation via activation of adenylyl cyclase/PKA and guanylyl cyclase/PKG signaling pathways independently of the endothelium, K(+) channels, Ca(2+) channels, and intracellular Ca(2+) ([Ca(2+)]i).
我们使用去氧肾上腺素(Phe)预收缩的主动脉环研究了瑞格列奈的血管舒张作用及其相关信号通路。瑞格列奈以浓度依赖性方式诱导血管舒张。瑞格列奈诱导的血管舒张不受内皮去除的影响。此外,应用一氧化氮合酶抑制剂(L-NAME)和小电导钙激活钾(SKCa)通道抑制剂(蜂毒明肽)不会改变瑞格列奈对内皮完整动脉的血管舒张作用。用腺苷酸环化酶抑制剂(SQ 22536)或蛋白激酶A(PKA)抑制剂(KT 5720)预处理可有效降低瑞格列奈诱导的血管舒张。同样,用鸟苷酸环化酶抑制剂(ODQ)或蛋白激酶G(PKG)抑制剂(KT 5823)预处理可抑制瑞格列奈诱导的血管舒张。然而,用电压依赖性钾(Kv)通道抑制剂(4-氨基吡啶)、ATP敏感性钾(KATP)通道抑制剂(格列本脲)、大电导钙激活钾(BKCa)通道抑制剂(帕吉林)或内向整流钾(Kir)通道抑制剂(Ba(2+))预处理不会影响瑞格列奈的血管舒张作用。此外,用钙(Ca(2+))抑制剂(硝苯地平)和肌浆网钙ATP酶(SERCA)抑制剂(毒胡萝卜素)预处理不会影响瑞格列奈的血管舒张作用。瑞格列奈的血管舒张作用不受高糖(50mM)的影响。基于这些结果,我们得出结论,瑞格列奈通过独立于内皮、钾通道、钙通道和细胞内钙([Ca(2+)]i)激活腺苷酸环化酶/PKA和鸟苷酸环化酶/PKG信号通路来诱导血管舒张。