Pozzi Nicola, Bystranowska Dominika, Zuo Xiaobing, Di Cera Enrico
From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 and.
the X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439.
J Biol Chem. 2016 Aug 26;291(35):18107-16. doi: 10.1074/jbc.M116.738310. Epub 2016 Jul 19.
The coagulation factor prothrombin has a complex spatial organization of its modular assembly that comprises the N-terminal Gla domain, kringle-1, kringle-2, and the C-terminal protease domain connected by three intervening linkers. Here we use single molecule Förster resonance energy transfer to access the conformational landscape of prothrombin in solution and uncover structural features of functional significance that extend recent x-ray crystallographic analysis. Prothrombin exists in equilibrium between two alternative conformations, open and closed. The closed conformation predominates (70%) and features an unanticipated intramolecular collapse of Tyr(93) in kringle-1 onto Trp(547) in the protease domain that obliterates access to the active site and protects the zymogen from autoproteolytic conversion to thrombin. The open conformation (30%) is more susceptible to chymotrypsin digestion and autoactivation, and features a shape consistent with recent x-ray crystal structures. Small angle x-ray scattering measurements of prothrombin wild type stabilized 70% in the closed conformation and of the mutant Y93A stabilized 80% in the open conformation directly document two envelopes that differ 50 Å in length. These findings reveal important new details on the conformational plasticity of prothrombin in solution and the drastic structural difference between its alternative conformations. Prothrombin uses the intramolecular collapse of kringle-1 onto the active site in the closed form to prevent autoactivation. The open-closed equilibrium also defines a new structural framework for the mechanism of activation of prothrombin by prothrombinase.
凝血因子凝血酶原具有复杂的模块化组装空间结构,其由N端γ-羧基谷氨酸(Gla)结构域、kringle-1结构域、kringle-2结构域以及通过三个中间连接体相连的C端蛋白酶结构域组成。在此,我们运用单分子荧光共振能量转移技术来探究溶液中凝血酶原的构象景观,并揭示具有功能意义的结构特征,这拓展了近期的X射线晶体学分析。凝血酶原在两种不同构象(开放型和闭合型)之间处于平衡状态。闭合型构象占主导(70%),其特征是kringle-1结构域中的酪氨酸(Tyr93)意外地向蛋白酶结构域中的色氨酸(Trp547)发生分子内折叠,从而阻断了对活性位点的 access 并保护酶原免于自蛋白水解转化为凝血酶。开放型构象(30%)更容易被胰凝乳蛋白酶消化和自激活,其形状与近期的X射线晶体结构一致。对处于70%闭合型构象稳定状态的野生型凝血酶原以及处于80%开放型构象稳定状态突变体Y93A进行的小角X射线散射测量,直接记录了两个长度相差50 Å的包络线。这些发现揭示了溶液中凝血酶原构象可塑性以及其不同构象之间巨大结构差异的重要新细节。凝血酶原利用kringle-1以闭合形式向活性位点的分子内折叠来防止自激活。开放 - 闭合平衡还为凝血酶原酶激活凝血酶原的机制定义了一个新的结构框架。