Suppr超能文献

电子健康记录嵌入式严重脓毒症警报的测试性能及临床零时验证

Validation of Test Performance and Clinical Time Zero for an Electronic Health Record Embedded Severe Sepsis Alert.

作者信息

Rolnick Joshua, Downing N Lance, Shepard John, Chu Weihan, Tam Julia, Wessels Alexander, Li Ron, Dietrich Brian, Rudy Michael, Castaneda Leon, Shieh Lisa

机构信息

Santa Clara Valley Medical Center.

Stanford Hospital & Clinics.

出版信息

Appl Clin Inform. 2016 Jun 22;7(2):560-72. doi: 10.4338/ACI-2015-11-RA-0159. eCollection 2016.

Abstract

BACHGROUND

Increasing use of EHRs has generated interest in the potential of computerized clinical decision support to improve treatment of sepsis. Electronic sepsis alerts have had mixed results due to poor test characteristics, the inability to detect sepsis in a timely fashion and the use of outside software limiting widespread adoption. We describe the development, evaluation and validation of an accurate and timely severe sepsis alert with the potential to impact sepsis management.

OBJECTIVE

To develop, evaluate, and validate an accurate and timely severe sepsis alert embedded in a commercial EHR.

METHODS

The sepsis alert was developed by identifying the most common severe sepsis criteria among a cohort of patients with ICD 9 codes indicating a diagnosis of sepsis. This alert requires criteria in three categories: indicators of a systemic inflammatory response, evidence of suspected infection from physician orders, and markers of organ dysfunction. Chart review was used to evaluate test performance and the ability to detect clinical time zero, the point in time when a patient develops severe sepsis.

RESULTS

Two physicians reviewed 100 positive cases and 75 negative cases. Based on this review, sensitivity was 74.5%, specificity was 86.0%, the positive predictive value was 50.3%, and the negative predictive value was 94.7%. The most common source of end-organ dysfunction was MAP less than 70 mm/Hg (59%). The alert was triggered at clinical time zero in 41% of cases and within three hours in 53.6% of cases. 96% of alerts triggered before a manual nurse screen.

CONCLUSION

We are the first to report the time between a sepsis alert and physician chart-review clinical time zero. Incorporating physician orders in the alert criteria improves specificity while maintaining sensitivity, which is important to reduce alert fatigue. By leveraging standard EHR functionality, this alert could be implemented by other healthcare systems.

摘要

背景

电子健康记录(EHR)的使用日益增加,引发了人们对计算机化临床决策支持改善脓毒症治疗潜力的兴趣。由于测试特征不佳、无法及时检测脓毒症以及使用外部软件限制了广泛采用,电子脓毒症警报的结果参差不齐。我们描述了一种准确及时的严重脓毒症警报的开发、评估和验证,其有可能影响脓毒症管理。

目的

开发、评估和验证嵌入商业EHR中的准确及时的严重脓毒症警报。

方法

通过在一组诊断为脓毒症的国际疾病分类第九版(ICD 9)编码患者中确定最常见的严重脓毒症标准来开发脓毒症警报。此警报需要三类标准:全身炎症反应指标、医生医嘱中疑似感染的证据以及器官功能障碍标志物。通过病历审查来评估测试性能以及检测临床零时(患者发生严重脓毒症的时间点)的能力。

结果

两名医生审查了100例阳性病例和75例阴性病例。基于此审查,敏感性为74.5%,特异性为86.0%,阳性预测值为50.3%,阴性预测值为94.7%。终末器官功能障碍最常见的来源是平均动脉压(MAP)低于70毫米汞柱(59%)。警报在41%的病例中于临床零时触发,在53.6%的病例中在三小时内触发。96%的警报在护士人工筛查之前触发。

结论

我们首次报告了脓毒症警报与医生病历审查临床零时之间的时间间隔。在警报标准中纳入医生医嘱可提高特异性,同时保持敏感性,这对于减少警报疲劳很重要。通过利用标准的EHR功能,其他医疗系统可以实施此警报。

相似文献

1
Validation of Test Performance and Clinical Time Zero for an Electronic Health Record Embedded Severe Sepsis Alert.
Appl Clin Inform. 2016 Jun 22;7(2):560-72. doi: 10.4338/ACI-2015-11-RA-0159. eCollection 2016.
3
Electronic health record-based clinical decision support alert for severe sepsis: a randomised evaluation.
BMJ Qual Saf. 2019 Sep;28(9):762-768. doi: 10.1136/bmjqs-2018-008765. Epub 2019 Mar 14.
4
Design, Implementation, and Validation of a Pediatric ICU Sepsis Prediction Tool as Clinical Decision Support.
Appl Clin Inform. 2020 Mar;11(2):218-225. doi: 10.1055/s-0040-1705107. Epub 2020 Mar 25.
5
Early Identification of Severe Sepsis in Pediatric Patients Using an Electronic Alert System.
Hosp Pediatr. 2023 Feb 1;13(2):174-182. doi: 10.1542/hpeds.2022-006587.
6
Testing modes of computerized sepsis alert notification delivery systems.
BMC Med Inform Decis Mak. 2016 Dec 9;16(1):156. doi: 10.1186/s12911-016-0396-y.
7
Developing the surveillance algorithm for detection of failure to recognize and treat severe sepsis.
Mayo Clin Proc. 2015 Feb;90(2):166-75. doi: 10.1016/j.mayocp.2014.11.014. Epub 2015 Jan 6.
8
Sepsis Alerts in Emergency Departments: A Systematic Review of Accuracy and Quality Measure Impact.
West J Emerg Med. 2020 Aug 24;21(5):1201-1210. doi: 10.5811/westjem.2020.5.46010.
9
Diagnostic accuracy and effectiveness of automated electronic sepsis alert systems: A systematic review.
J Hosp Med. 2015 Jun;10(6):396-402. doi: 10.1002/jhm.2347. Epub 2015 Mar 11.
10
Evaluation of an augmented emergency department electronic medical record-based sepsis alert.
Emerg Med Australas. 2021 Oct;33(5):848-856. doi: 10.1111/1742-6723.13748. Epub 2021 Feb 23.

引用本文的文献

1
Modulators Influencing Medication Alert Acceptance: An Explorative Review.
Appl Clin Inform. 2022 Mar;13(2):468-485. doi: 10.1055/s-0042-1748146. Epub 2022 Aug 18.
2
Impact of an electronic alert system for pediatric sepsis screening a tertiary hospital experience.
Sci Rep. 2022 Jul 20;12(1):12436. doi: 10.1038/s41598-022-16632-2.
3
Evaluation of a Sepsis Alert in the Pediatric Acute Care Setting.
Appl Clin Inform. 2021 May;12(3):469-478. doi: 10.1055/s-0041-1730027. Epub 2021 May 26.
5
Design, Implementation, and Validation of a Pediatric ICU Sepsis Prediction Tool as Clinical Decision Support.
Appl Clin Inform. 2020 Mar;11(2):218-225. doi: 10.1055/s-0040-1705107. Epub 2020 Mar 25.
6
Influencing outcomes with automated time zero for sepsis through statistical validation and process improvement.
Mhealth. 2019 Sep 17;5:36. doi: 10.21037/mhealth.2019.09.04. eCollection 2019.
7
Visualizing Infection Surveillance Data for Policymaking Using Open Source Dashboarding.
Appl Clin Inform. 2019 May;10(3):534-542. doi: 10.1055/s-0039-1693649. Epub 2019 Jul 24.
8
To catch a killer: electronic sepsis alert tools reaching a fever pitch?
BMJ Qual Saf. 2019 Sep;28(9):693-696. doi: 10.1136/bmjqs-2019-009463. Epub 2019 Apr 23.
9
Information Technology and Acute Kidney Injury: Alerts, Alarms, Bells, and Whistles.
Adv Chronic Kidney Dis. 2017 Jul;24(4):241-245. doi: 10.1053/j.ackd.2017.05.007.

本文引用的文献

1
Effect of an electronic medical record alert for severe sepsis among ED patients.
Am J Emerg Med. 2016 Feb;34(2):185-8. doi: 10.1016/j.ajem.2015.10.005. Epub 2015 Oct 14.
2
Diagnostic accuracy and effectiveness of automated electronic sepsis alert systems: A systematic review.
J Hosp Med. 2015 Jun;10(6):396-402. doi: 10.1002/jhm.2347. Epub 2015 Mar 11.
4
Clinical Decision Support for Early Recognition of Sepsis.
Am J Med Qual. 2016 Mar-Apr;31(2):103-10. doi: 10.1177/1062860614557636. Epub 2014 Nov 10.
5
Development, implementation, and impact of an automated early warning and response system for sepsis.
J Hosp Med. 2015 Jan;10(1):26-31. doi: 10.1002/jhm.2259. Epub 2014 Sep 26.
6
Automated detection of physiologic deterioration in hospitalized patients.
J Am Med Inform Assoc. 2015 Mar;22(2):350-60. doi: 10.1136/amiajnl-2014-002816. Epub 2014 Aug 27.
7
Identifying severe sepsis via electronic surveillance.
Am J Med Qual. 2015 Nov-Dec;30(6):559-65. doi: 10.1177/1062860614541291. Epub 2014 Jun 26.
8
The impact of an electronic medical record surveillance program on outcomes for patients with sepsis.
Heart Lung. 2014 Nov-Dec;43(6):546-9. doi: 10.1016/j.hrtlng.2014.05.009. Epub 2014 Jun 21.
9
Automated electronic medical record sepsis detection in the emergency department.
PeerJ. 2014 Apr 10;2:e343. doi: 10.7717/peerj.343. eCollection 2014.
10
Benchmarking the incidence and mortality of severe sepsis in the United States.
Crit Care Med. 2013 May;41(5):1167-74. doi: 10.1097/CCM.0b013e31827c09f8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验