Suppr超能文献

基于电子健康记录的严重脓毒症临床决策支持警报:一项随机评估。

Electronic health record-based clinical decision support alert for severe sepsis: a randomised evaluation.

机构信息

Department of Medicine - Biomedical Informatics Research, Hospital Medicine, and Primary Care and Population Health, Stanford University, Stanford, California, USA

Clinical Excellence Research Center, Stanford University, Stanford, California, USA.

出版信息

BMJ Qual Saf. 2019 Sep;28(9):762-768. doi: 10.1136/bmjqs-2018-008765. Epub 2019 Mar 14.

Abstract

BACKGROUND

Sepsis remains the top cause of morbidity and mortality of hospitalised patients despite concerted efforts. Clinical decision support for sepsis has shown mixed results reflecting heterogeneous populations, methodologies and interventions.

OBJECTIVES

To determine whether the addition of a real-time electronic health record (EHR)-based clinical decision support alert improves adherence to treatment guidelines and clinical outcomes in hospitalised patients with suspected severe sepsis.

DESIGN

Patient-level randomisation, single blinded.

SETTING

Medical and surgical inpatient units of an academic, tertiary care medical centre.

PATIENTS

1123 adults over the age of 18 admitted to inpatient wards (intensive care units (ICU) excluded) at an academic teaching hospital between November 2014 and March 2015.

INTERVENTIONS

Patients were randomised to either usual care or the addition of an EHR-generated alert in response to a set of modified severe sepsis criteria that included vital signs, laboratory values and physician orders.

MEASUREMENTS AND MAIN RESULTS

There was no significant difference between the intervention and control groups in primary outcome of the percentage of patients with new antibiotic orders at 3 hours after the alert (35% vs 37%, p=0.53). There was no difference in secondary outcomes of in-hospital mortality at 30 days, length of stay greater than 72 hours, rate of transfer to ICU within 48 hours of alert, or proportion of patients receiving at least 30 mL/kg of intravenous fluids.

CONCLUSIONS

An EHR-based severe sepsis alert did not result in a statistically significant improvement in several sepsis treatment performance measures.

摘要

背景

尽管已经做出了协同努力,败血症仍然是住院患者发病率和死亡率的首要原因。败血症的临床决策支持已经显示出混合的结果,反映了不同的人群、方法和干预措施。

目的

确定在疑似严重败血症的住院患者中,添加基于实时电子健康记录 (EHR) 的临床决策支持警报是否可以提高治疗指南的依从性和临床结果。

设计

患者水平随机化,单盲。

设置

学术、三级保健医疗中心的内科和外科住院病房。

患者

2014 年 11 月至 2015 年 3 月期间,在一家学术教学医院的住院病房(不包括重症监护病房 (ICU))收治的 1123 名 18 岁以上的成年人。

干预措施

患者被随机分配到常规护理组或 EHR 生成的警报组,以响应一组经过修改的严重败血症标准,其中包括生命体征、实验室值和医生医嘱。

测量和主要结果

在警报后 3 小时新抗生素医嘱的患者比例(35%比 37%,p=0.53)这一主要结局方面,干预组和对照组之间没有显著差异。次要结局,包括 30 天内院内死亡率、住院时间超过 72 小时、在警报后 48 小时内转至 ICU 的比率以及接受至少 30ml/kg 静脉补液的患者比例,两组之间也没有差异。

结论

基于 EHR 的严重败血症警报并没有在几个败血症治疗效果指标上产生统计学上的显著改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ea/6860967/0cfb67b0712e/bmjqs-2018-008765f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验