Kell Adam, Blankenship Robert E, Jankowiak Ryszard
Departments of Chemistry and Biology, Washington University in St. Louis , St. Louis, Missouri 63130, United States.
J Phys Chem A. 2016 Aug 11;120(31):6146-54. doi: 10.1021/acs.jpca.6b03107. Epub 2016 Aug 1.
The Fenna-Matthews-Olson (FMO) trimer (composed of identical subunits) from the green sulfur bacterium Chlorobaculum tepidum is an important protein model system to study exciton dynamics and excitation energy transfer (EET) in photosynthetic complexes. In addition, FMO is a popular model for excitonic calculations, with many theoretical parameter sets reported describing different linear and nonlinear optical spectra. Due to fast exciton relaxation within each subunit, intermonomer EET results predominantly from the lowest energy exciton states (contributed to by BChl a 3 and 4). Using experimentally determined shapes for the spectral densities, simulated optical spectra are obtained for the entire FMO trimer. Simultaneous fits of low-temperature absorption, fluorescence, and hole-burned spectra place constraints on the determined pigment site energies, providing a new Hamiltonian that should be further tested to improve modeling of 2D electronic spectroscopy data and our understanding of coherent and dissipation effects in this important protein complex.
来自绿硫细菌嗜热栖热菌的芬纳-马修斯-奥尔森(FMO)三聚体(由相同亚基组成)是研究光合复合物中激子动力学和激发能量转移(EET)的重要蛋白质模型系统。此外,FMO是激子计算的常用模型,有许多理论参数集报道描述了不同的线性和非线性光谱。由于每个亚基内激子快速弛豫,单体间的EET主要来自最低能量激子态(由细菌叶绿素a 3和4贡献)。利用实验确定的光谱密度形状,获得了整个FMO三聚体的模拟光谱。低温吸收、荧光和烧孔光谱的同时拟合对确定的色素位点能量施加了限制,提供了一个新的哈密顿量,应进一步测试以改进二维电子光谱数据的建模以及我们对这个重要蛋白质复合物中相干和耗散效应的理解。