光合作用调节电子和振动态的量子混合以引导激子能量转移。
Photosynthesis tunes quantum-mechanical mixing of electronic and vibrational states to steer exciton energy transfer.
机构信息
Department of Chemistry, The University of Chicago, Chicago, IL 60637.
The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637.
出版信息
Proc Natl Acad Sci U S A. 2021 Mar 16;118(11). doi: 10.1073/pnas.2018240118.
Photosynthetic species evolved to protect their light-harvesting apparatus from photoxidative damage driven by intracellular redox conditions or environmental conditions. The Fenna-Matthews-Olson (FMO) pigment-protein complex from green sulfur bacteria exhibits redox-dependent quenching behavior partially due to two internal cysteine residues. Here, we show evidence that a photosynthetic complex exploits the quantum mechanics of vibronic mixing to activate an oxidative photoprotective mechanism. We use two-dimensional electronic spectroscopy (2DES) to capture energy transfer dynamics in wild-type and cysteine-deficient FMO mutant proteins under both reducing and oxidizing conditions. Under reducing conditions, we find equal energy transfer through the exciton 4-1 and 4-2-1 pathways because the exciton 4-1 energy gap is vibronically coupled with a bacteriochlorophyll- vibrational mode. Under oxidizing conditions, however, the resonance of the exciton 4-1 energy gap is detuned from the vibrational mode, causing excitons to preferentially steer through the indirect 4-2-1 pathway to increase the likelihood of exciton quenching. We use a Redfield model to show that the complex achieves this effect by tuning the site III energy via the redox state of its internal cysteine residues. This result shows how pigment-protein complexes exploit the quantum mechanics of vibronic coupling to steer energy transfer.
光合物种进化出了一套机制来保护其光捕获装置,使其免受由细胞内氧化还原条件或环境条件引起的光氧化损伤。来自绿硫细菌的 Fenna-Matthews-Olson (FMO) 色素蛋白复合物表现出氧化还原依赖性猝灭行为,部分原因是两个内部半胱氨酸残基。在这里,我们证明了一种光合复合物利用振子混合的量子力学来激活氧化光保护机制。我们使用二维电子光谱 (2DES) 在还原和氧化条件下,在野生型和半胱氨酸缺陷 FMO 突变体蛋白中捕获能量转移动力学。在还原条件下,我们发现通过激子 4-1 和 4-2-1 途径的能量转移相等,因为激子 4-1 的能量间隙与细菌叶绿素振动模式振子耦合。然而,在氧化条件下,激子 4-1 能量间隙的共振与振动模式失谐,导致激子优先通过间接的 4-2-1 途径引导,以增加激子猝灭的可能性。我们使用 Redfield 模型表明,该复合物通过其内部半胱氨酸残基的氧化还原状态来调节 III 位点的能量来实现这一效果。该结果展示了色素蛋白复合物如何利用振子耦合的量子力学来引导能量转移。