Suppr超能文献

太赫兹光谱学在单个单壁碳纳米管中的应用:对 Luttinger 液体物理的探测。

Terahertz Spectroscopy of Individual Single-Walled Carbon Nanotubes as a Probe of Luttinger Liquid Physics.

机构信息

Department of Applied Physics, Yale University , New Haven, Connecticut 06511, United States.

Department of Physics, University of North Florida , Jacksonville, Florida 32224, United States.

出版信息

Nano Lett. 2016 Aug 10;16(8):4909-16. doi: 10.1021/acs.nanolett.6b01485. Epub 2016 Jul 20.

Abstract

Luttinger liquid theory predicts that collective electron excitations due to strong electron-electron interactions in a one-dimensional (1D) system will result in a modification of the collective charge-propagation velocity. By utilizing a circuit model for an individual metallic single-walled carbon nanotube as a nanotransmission line, it has been shown that the frequency-dependent terahertz impedance of a carbon nanotube can probe this expected 1D Luttinger liquid behavior. We excite terahertz standing-wave resonances on individual antenna-coupled metallic single-walled carbon nanotubes. The terahertz signal is rectified using the nanotube contact nonlinearity, allowing for a low-frequency readout of the coupled terahertz current. The charge velocity on the nanotube is determined from the terahertz spectral response. Our measurements show that a carbon nanotube can behave as a Luttinger liquid system with charge-propagation velocities that are faster than the Fermi velocity. Understanding what determines the charge velocity in low-dimensional conductors is important for the development of next generation nanodevices.

摘要

Luttinger 液体理论预测,由于一维(1D)系统中强电子-电子相互作用引起的集体电子激发将导致集体电荷传播速度发生变化。通过利用单个金属单壁碳纳米管的电路模型作为纳米传输线,已经表明碳纳米管的频率相关太赫兹阻抗可以探测到预期的 1D Luttinger 液体行为。我们在单个天线耦合的金属单壁碳纳米管上激发太赫兹驻波共振。利用纳米管接触非线性对太赫兹信号进行整流,从而可以对耦合的太赫兹电流进行低频读出。通过太赫兹光谱响应确定纳米管上的电荷速度。我们的测量结果表明,碳纳米管可以表现为具有比费米速度更快的电荷传播速度的 Luttinger 液体系统。了解是什么决定了低维导体中的电荷速度对于下一代纳米器件的发展非常重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验