Puchart Vladimír, Agger Jane W, Berrin Jean-Guy, Várnai Anikó, Westereng Bjørge, Biely Peter
Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovak Republic.
Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway.
J Biotechnol. 2016 Sep 10;233:228-36. doi: 10.1016/j.jbiotec.2016.07.003. Epub 2016 Jul 18.
The enzymatic conversion of acetylated hardwood glucuronoxylan to functional food oligomers, biochemicals or fermentable monomers requires besides glycoside hydrolases enzymes liberating acetic acid esterifying position 2 and/or 3 in xylopyranosyl (Xylp) residues. The 3-O-acetyl group at internal Xylp residues substituted by MeGlcA is the only acetyl group of hardwood acetylglucuronoxylan and its fragments not attacked by acetylxylan esterases of carbohydrate esterase (CE) families 1, 4, 5 and 6 and by hemicellulolytic acetyl esterases classified in CE family 16. Monoacetylated aldotetraouronic acid 3″-Ac(3)MeGlcA(3)Xyl3, generated from the polysaccharide by GH10 endoxylanases, appears to be one of the most resistant fragments. The presence of the two substituents on the non-reducing-end Xylp residue prevents liberation of MeGlcA by α-glucuronidase of family GH67 and blocks the action of acetylxylan esterases. The Ac(3)MeGlcA(3)Xyl3 was isolated from an enzymatic hydrolysate of birchwood acetylglucuronoxylan and characterized by (1)H NMR spectroscopy as a mixture of two positional isomers, 3″-Ac(3)MeGlcA(3)Xyl3 and 4″-Ac(3)MeGlcA(3)Xyl3, the latter being the result of acetyl group migration. The mixture was used as a substrate for three members of CE16 family of fungal origin. Trichoderma reesei CE16 esterase, inactive on polymeric substrate, deacetylated both isomers. Podospora anserina and Aspergillus niger esterases, active on acetylglucuronoxylan, deesterified effectively only the 4″-isomer. The results indicate catalytic diversity among CE16 enzymes, but also their common and unifying catalytic ability to exo-deacetylate positions 3 and 4 on non-reducing-end Xylp residues, which is an important step in plant hemicellulose saccharification.
将乙酰化阔叶木葡糖醛酸木聚糖转化为功能性食品低聚物、生物化学品或可发酵单体,除了糖苷水解酶外,还需要能释放木糖残基(Xylp)中2位和/或3位乙酸酯的酶。被MeGlcA取代的内部Xylp残基上的3-O-乙酰基是阔叶木乙酰葡糖醛酸木聚糖及其片段中唯一不被碳水化合物酯酶(CE)家族1、4、5和6的乙酰木聚糖酯酶以及CE家族16分类的半纤维素乙酰酯酶攻击的乙酰基。由GH10内切木聚糖酶从多糖产生的单乙酰化醛糖四糖酸3″-Ac(3)MeGlcA(3)Xyl3似乎是最具抗性的片段之一。非还原端Xylp残基上两个取代基的存在阻止了GH67家族的α-葡糖醛酸酶释放MeGlcA,并阻断了乙酰木聚糖酯酶的作用。Ac(3)MeGlcA(3)Xyl3从桦木乙酰葡糖醛酸木聚糖的酶解产物中分离出来,并通过(1)H NMR光谱表征为两种位置异构体3″-Ac(3)MeGlcA(3)Xyl3和4″-Ac(3)MeGlcA(3)Xyl3的混合物,后者是乙酰基迁移的结果。该混合物用作真菌来源的CE16家族三个成员的底物。里氏木霉CE16酯酶对聚合物底物无活性,使两种异构体脱乙酰化。黑麦角菌和黑曲霉酯酶对乙酰葡糖醛酸木聚糖有活性,仅有效地使4″-异构体脱酯。结果表明CE16酶之间存在催化多样性,但它们也具有共同且统一的催化能力,即对外切去乙酰化非还原端Xylp残基上的3位和4位,这是植物半纤维素糖化的重要步骤。