Suppr超能文献

弱团属性在链接预测中的作用:一种朋友推荐模型。

Playing the role of weak clique property in link prediction: A friend recommendation model.

作者信息

Ma Chuang, Zhou Tao, Zhang Hai-Feng

机构信息

School of Mathematical Science, Anhui University, Hefei 230601, China.

Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054, China.

出版信息

Sci Rep. 2016 Jul 21;6:30098. doi: 10.1038/srep30098.

Abstract

An important fact in studying link prediction is that the structural properties of networks have significant impacts on the performance of algorithms. Therefore, how to improve the performance of link prediction with the aid of structural properties of networks is an essential problem. By analyzing many real networks, we find a typical structural property: nodes are preferentially linked to the nodes with the weak clique structure (abbreviated as PWCS to simplify descriptions). Based on this PWCS phenomenon, we propose a local friend recommendation (FR) index to facilitate link prediction. Our experiments show that the performance of FR index is better than some famous local similarity indices, such as Common Neighbor (CN) index, Adamic-Adar (AA) index and Resource Allocation (RA) index. We then explain why PWCS can give rise to the better performance of FR index in link prediction. Finally, a mixed friend recommendation index (labelled MFR) is proposed by utilizing the PWCS phenomenon, which further improves the accuracy of link prediction.

摘要

研究链接预测中的一个重要事实是,网络的结构属性对算法性能有重大影响。因此,如何借助网络的结构属性提高链接预测性能是一个关键问题。通过分析许多真实网络,我们发现一种典型的结构属性:节点优先与具有弱团结构的节点相连(为简化描述,简称为PWCS)。基于这种PWCS现象,我们提出一种局部朋友推荐(FR)指标以促进链接预测。我们的实验表明,FR指标的性能优于一些著名的局部相似性指标,如共同邻居(CN)指标、亚当斯 - 阿达(AA)指标和资源分配(RA)指标。然后我们解释了为什么PWCS能在链接预测中使FR指标具有更好的性能。最后,通过利用PWCS现象提出了一种混合朋友推荐指标(标记为MFR),它进一步提高了链接预测的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17e0/4954950/5d8223bb6ac8/srep30098-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验