Suppr超能文献

时间依赖准确性度量的非参数估计中的偏差和方差缩减

Bias and variance reduction in nonparametric estimation of time-dependent accuracy measures.

作者信息

Chiang Chin-Tsang, Huang Ming-Yueh, Wang Shao-Hsuan

机构信息

Institute of Applied Mathematical Sciences, National Taiwan University, Taipei, Taiwan.

出版信息

Stat Med. 2016 Dec 10;35(28):5247-5266. doi: 10.1002/sim.7058. Epub 2016 Jul 21.

Abstract

A new nonparametric approach is developed to estimate the time-dependent accuracy measure curves, which are defined on the cumulative cases and dynamic controls, for censored survival data. Based on an estimable survival process, the main intention of this study is to reduce the finite-sample biases of nearest neighbor estimators. The asymptotic variances of some retrospective accuracy measure estimators are further reduced by applying a smoothing technique to the underlying process of a marker. Meanwhile, practically feasible and theoretically valid procedures are proposed for bandwidth selection in the presented estimators. In addition, the proposed methodology can be reasonably extended to accommodate stratified survival data and survival data with multiple markers. As shown in the simulations, our new estimators outperform the nearest neighbor and inverse censoring weighted estimators. Data from the AIDS Clinical Trials Group study 175 and an angiographic coronary artery disease study are also used to illustrate the proposed methodology. Copyright © 2016 John Wiley & Sons, Ltd.

摘要

针对删失生存数据,开发了一种新的非参数方法来估计时间相依精度度量曲线,该曲线是根据累积病例和动态对照定义的。基于一个可估计的生存过程,本研究的主要目的是减少最近邻估计器的有限样本偏差。通过对标记的基础过程应用平滑技术,进一步降低了一些回顾性精度度量估计器的渐近方差。同时,针对所提出的估计器中的带宽选择,提出了实际可行且理论有效的程序。此外,所提出的方法可以合理扩展以适应分层生存数据和具有多个标记的生存数据。如模拟所示,我们的新估计器优于最近邻估计器和逆删失加权估计器。艾滋病临床试验组研究175的数据和一项血管造影冠状动脉疾病研究的数据也用于说明所提出的方法。版权所有© 2016约翰威立父子有限公司。

相似文献

1
Bias and variance reduction in nonparametric estimation of time-dependent accuracy measures.
Stat Med. 2016 Dec 10;35(28):5247-5266. doi: 10.1002/sim.7058. Epub 2016 Jul 21.
2
Nonparametric estimation of time-dependent ROC curves conditional on a continuous covariate.
Stat Med. 2016 Mar 30;35(7):1090-102. doi: 10.1002/sim.6769. Epub 2015 Oct 20.
3
Estimating time-dependent ROC curves using data under prevalent sampling.
Stat Med. 2017 Apr 15;36(8):1285-1301. doi: 10.1002/sim.7184. Epub 2016 Nov 27.
4
Smooth time-dependent receiver operating characteristic curve estimators.
Stat Methods Med Res. 2018 Mar;27(3):651-674. doi: 10.1177/0962280217740786. Epub 2017 Nov 29.
5
Estimation for the optimal combination of markers without modeling the censoring distribution.
Biometrics. 2009 Mar;65(1):152-8. doi: 10.1111/j.1541-0420.2007.01040.x. Epub 2008 Apr 16.
6
Combining biomarkers for classification with covariate adjustment.
Stat Med. 2017 Jul 10;36(15):2347-2362. doi: 10.1002/sim.7274. Epub 2017 Mar 9.
7
Time-dependent ROC curve estimation for interval-censored data.
Biom J. 2022 Aug;64(6):1056-1074. doi: 10.1002/bimj.202000382. Epub 2022 May 6.
8
Double-smoothing in kernel hazard rate estimation.
Methods Inf Med. 2008;47(2):167-73.
9
Estimation of the volume under the receiver-operating characteristic surface adjusting for non-ignorable verification bias.
Stat Methods Med Res. 2018 Mar;27(3):715-739. doi: 10.1177/0962280217742541. Epub 2018 Jan 17.
10
A simple method to estimate the time-dependent receiver operating characteristic curve and the area under the curve with right censored data.
Stat Methods Med Res. 2018 Aug;27(8):2264-2278. doi: 10.1177/0962280216680239. Epub 2016 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验