ISBA, UCLouvain, Louvain la Neuve, Belgium.
Department of Statistics, College of Natural Sciences, Wollo University, Dessie, Ethiopia.
Biom J. 2022 Aug;64(6):1056-1074. doi: 10.1002/bimj.202000382. Epub 2022 May 6.
The receiver-operating characteristic (ROC) curve is the most popular graphical method for evaluating the classification accuracy of a diagnostic marker. In time-to-event studies, the subject's event status is time-dependent, and hence, time-dependent extensions of ROC curve have been proposed. However, in practice, the calculation of this curve is not straightforward due to the presence of censoring that may be of different types. Existing methods focus on the more standard and simple case of right-censoring and neglect the general case of mixed interval-censored data that may involve left-, right-, and interval-censored observations. In this context, we propose and study a new time-dependent ROC curve estimator. We also consider some summary measures (area under the ROC curve and Youden index) traditionally associated with ROC as well as the Youden-based cutoff estimation method. The proposed method uses available data very efficiently. To this end, the unknown status (positive or negative) of censored subjects are estimated from the data via the estimation of the conditional survival function given the marker. For that, we investigate both model-based and nonparametric approaches. We also provide variance estimates and confidence intervals using Bootstrap. A simulation study is conducted to investigate the finite sample behavior of the proposed methods and to compare their performance with a competitor. Globally, we observed better finite sample performances for the proposed estimators. Finally, we illustrate the methods using two data sets one from a hypobaric decompression sickness study and the other from an oral health study. The proposed methods are implemented in the R package cenROC.
受试者工作特征(ROC)曲线是评估诊断标志物分类准确性的最常用图形方法。在生存时间研究中,受试者的事件状态是时变的,因此,已经提出了 ROC 曲线的时变扩展。然而,在实践中,由于可能存在不同类型的删失,该曲线的计算并不简单。现有的方法侧重于更标准和简单的右删失情况,而忽略了可能涉及左删失、右删失和区间删失观察的混合区间删失数据的一般情况。在这种情况下,我们提出并研究了一种新的时变 ROC 曲线估计器。我们还考虑了一些与 ROC 相关的传统摘要度量(ROC 曲线下面积和 Youden 指数)以及基于 Youden 的截止值估计方法。所提出的方法非常有效地利用了可用数据。为此,通过对标记给定的条件生存函数进行估计,从数据中估计删失受试者的未知状态(阳性或阴性)。为此,我们研究了基于模型和非参数方法。我们还使用 Bootstrap 提供方差估计和置信区间。进行了模拟研究,以研究所提出方法的有限样本行为,并比较它们与竞争对手的性能。总体而言,我们观察到所提出的估计器具有更好的有限样本性能。最后,我们使用来自低压减压病研究和口腔健康研究的两个数据集来说明这些方法。所提出的方法在 R 包 cenROC 中实现。