Suppr超能文献

具有超低翻转角的快速频率扫描光谱成像。

Fast frequency-sweep spectroscopic imaging with an ultra-low flip angle.

作者信息

Guo Junyu, Patay Zoltan, Reddick Wilburn E

机构信息

Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, 38105 Tennessee, USA.

出版信息

Sci Rep. 2016 Jul 21;6:30066. doi: 10.1038/srep30066.

Abstract

Magnetic resonance (MR) spectroscopic imaging has become an important tool in clinical settings for noninvasively obtaining spatial and metabolic information on a molecular scale. Conventional spectroscopic imaging is acquired in the time domain, and its clinical application is limited by the long acquisition time, restricted spatial coverage, and complex suppression and reconstruction procedures. We introduce a fast MR spectroscopic imaging technique in the frequency domain, termed phase-cycled spectroscopic imaging (PCSI). PCSI uses a balanced steady-state free precession (bSSFP) sequence with an ultra-low flip angle to achieve very high acquisition efficiency with a short repetition time. This approach enables faster frequency sweeping by changing the cycled RF phase and using flexible non-uniform sampling, and it greatly reduces the RF energy deposition in tissue. With its intrinsic water and fat suppression, PCSI more closely resembles routine clinical scans because it eliminates the suppression steps. We demonstrate that it is feasible to acquire PCSI spectra in a phantom and in humans and that PCSI provides an efficient spectroscopic imaging method, even for J-coupled metabolites. PCSI may enable spectroscopic imaging to play a larger role in the clinical assessment of the spatial tissue distribution of metabolites.

摘要

磁共振(MR)波谱成像已成为临床环境中一种重要工具,可在分子尺度上无创获取空间和代谢信息。传统波谱成像在时域采集,其临床应用受到采集时间长、空间覆盖受限以及复杂的抑制和重建程序的限制。我们介绍一种频域快速MR波谱成像技术,称为相位循环波谱成像(PCSI)。PCSI使用具有超低翻转角的平衡稳态自由进动(bSSFP)序列,以在短重复时间内实现非常高的采集效率。这种方法通过改变循环射频相位并使用灵活的非均匀采样实现更快的频率扫描,并大大减少组织中的射频能量沉积。凭借其固有的水和脂肪抑制功能,PCSI更类似于常规临床扫描,因为它省去了抑制步骤。我们证明在体模和人体中获取PCSI波谱是可行的,并且PCSI提供了一种高效的波谱成像方法,即使对于J耦合代谢物也是如此。PCSI可能使波谱成像在代谢物空间组织分布的临床评估中发挥更大作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05d5/4954958/b27315b7a4d7/srep30066-f1.jpg

相似文献

1
Fast frequency-sweep spectroscopic imaging with an ultra-low flip angle.
Sci Rep. 2016 Jul 21;6:30066. doi: 10.1038/srep30066.
4
True constructive interference in the steady state (trueCISS).
Magn Reson Med. 2018 Apr;79(4):1901-1910. doi: 10.1002/mrm.26836. Epub 2017 Jul 24.
5
Artificial neural network for suppression of banding artifacts in balanced steady-state free precession MRI.
Magn Reson Imaging. 2017 Apr;37:139-146. doi: 10.1016/j.mri.2016.11.020. Epub 2016 Nov 27.
6
Neurologic 3D MR spectroscopic imaging with low-power adiabatic pulses and fast spiral acquisition.
Radiology. 2012 Feb;262(2):647-61. doi: 10.1148/radiol.11110277. Epub 2011 Dec 20.
7
A multicontrast imaging method using steady-state free precession with alternating RF flip angles.
Magn Reson Med. 2018 Oct;80(4):1341-1351. doi: 10.1002/mrm.27342. Epub 2018 May 9.
8
Phase-based fast 3D high-resolution quantitative T MRI in 7 T human brain imaging.
Sci Rep. 2022 Aug 18;12(1):14088. doi: 10.1038/s41598-022-17607-z.
9
Quantification of superparamagnetic iron oxide using inversion recovery balanced steady-state free precession.
Magn Reson Imaging. 2013 Jul;31(6):953-60. doi: 10.1016/j.mri.2013.03.010. Epub 2013 Apr 17.

引用本文的文献

本文引用的文献

1
Accelerating phase-encoded proton MR spectroscopic imaging by compressed sensing.
J Magn Reson Imaging. 2015 Feb;41(2):487-95. doi: 10.1002/jmri.24553. Epub 2014 Jan 17.
2
MR spectroscopic imaging: principles and recent advances.
J Magn Reson Imaging. 2013 Jun;37(6):1301-25. doi: 10.1002/jmri.23945. Epub 2012 Nov 27.
3
Role of very high order and degree B0 shimming for spectroscopic imaging of the human brain at 7 tesla.
Magn Reson Med. 2012 Oct;68(4):1007-17. doi: 10.1002/mrm.24122. Epub 2011 Dec 28.
4
Spectroscopic imaging using concentrically circular echo-planar trajectories in vivo.
Magn Reson Med. 2012 Jun;67(6):1515-22. doi: 10.1002/mrm.23184. Epub 2011 Oct 17.
5
Single-shot magnetic resonance spectroscopic imaging with partial parallel imaging.
Magn Reson Med. 2009 Mar;61(3):541-7. doi: 10.1002/mrm.21855.
6
Sparse MRI: The application of compressed sensing for rapid MR imaging.
Magn Reson Med. 2007 Dec;58(6):1182-95. doi: 10.1002/mrm.21391.
8
Complex data analysis in high-resolution SSFP fMRI.
Magn Reson Med. 2007 May;57(5):905-17. doi: 10.1002/mrm.21195.
9
Reduction of transmitter B1 inhomogeneity with transmit SENSE slice-select pulses.
Magn Reson Med. 2007 May;57(5):842-7. doi: 10.1002/mrm.21221.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验