Suppr超能文献

使用发射敏感编码(SENSE)切片选择脉冲减少发射机B1不均匀性。

Reduction of transmitter B1 inhomogeneity with transmit SENSE slice-select pulses.

作者信息

Zhang Zhenghui, Yip Chun-Yu, Grissom William, Noll Douglas C, Boada Fernando E, Stenger V Andrew

机构信息

Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

出版信息

Magn Reson Med. 2007 May;57(5):842-7. doi: 10.1002/mrm.21221.

Abstract

Parallel transmitter techniques are a promising approach for reducing transmitter B1 inhomogeneity due to the potential for adjusting the spatial excitation profile with independent RF pulses. These techniques may be further improved with transmit sensitivity encoding (SENSE) methods because the sensitivity information in pulse design provides an excitation that is inherently compensated for transmitter B1 inhomogeneity. This paper presents a proof of this concept using transmit SENSE 3D tailored RF pulses designed for small flip angles. An eight-channel receiver coil was used to mimic parallel transmission for brain imaging at 3T. The transmit SENSE pulses were based on the fast-k(z) design and produced 5-mm-thick slices at a flip angle of 30 degrees with only a 4.3-ms pulse length. It was found that the transmit SENSE pulses produced more homogeneous images than those obtained from the complex sum of images from all receivers excited with a standard RF pulse.

摘要

并行发射技术是一种很有前景的方法,可用于减少发射机B1不均匀性,因为它有可能通过独立的射频脉冲来调整空间激发分布。这些技术可以通过发射灵敏度编码(SENSE)方法进一步改进,因为脉冲设计中的灵敏度信息提供了一种固有地补偿发射机B1不均匀性的激发。本文使用为小翻转角设计的发射SENSE 3D定制射频脉冲,展示了这一概念的验证。使用一个八通道接收线圈来模拟3T下用于脑成像的并行发射。发射SENSE脉冲基于快速k(z)设计,在30度翻转角下仅用4.3毫秒的脉冲长度就能产生5毫米厚的切片。结果发现,与用标准射频脉冲激发所有接收器得到的图像的复数和相比,发射SENSE脉冲产生的图像更均匀。

相似文献

1
Reduction of transmitter B1 inhomogeneity with transmit SENSE slice-select pulses.
Magn Reson Med. 2007 May;57(5):842-7. doi: 10.1002/mrm.21221.
2
Fast-kz three-dimensional tailored radiofrequency pulse for reduced B1 inhomogeneity.
Magn Reson Med. 2006 Apr;55(4):719-24. doi: 10.1002/mrm.20840.
4
Slice profile correction for transmit sensitivity mapping using actual flip angle imaging.
Magn Reson Med. 2011 May;65(5):1393-9. doi: 10.1002/mrm.22739. Epub 2010 Dec 16.
5
Design of universal parallel-transmit refocusing k -point pulses and application to 3D T -weighted imaging at 7T.
Magn Reson Med. 2018 Jul;80(1):53-65. doi: 10.1002/mrm.27001. Epub 2017 Nov 29.
7
Tailored spiral in-out spectral-spatial water suppression pulses for magnetic resonance spectroscopic imaging.
Magn Reson Med. 2018 Jan;79(1):31-40. doi: 10.1002/mrm.26683. Epub 2017 Mar 31.
9
Image-guided radio-frequency gain calibration for high-field MRI.
NMR Biomed. 2010 May;23(4):368-74. doi: 10.1002/nbm.1471. Epub 2009 Dec 15.
10
Parallel RF transmission with eight channels at 3 Tesla.
Magn Reson Med. 2006 Nov;56(5):1163-71. doi: 10.1002/mrm.21042.

引用本文的文献

3
6
k-Space Domain Parallel Transmit Pulse Design.
Magn Reson Med. 2021 May;85(5):2568-2579. doi: 10.1002/mrm.28601. Epub 2020 Nov 26.
9
First in-vivo human imaging at 10.5T: Imaging the body at 447 MHz.
Magn Reson Med. 2020 Jul;84(1):289-303. doi: 10.1002/mrm.28131. Epub 2019 Dec 17.
10
Amide Proton Transfer Contrast Distribution in Different Brain Regions in Young Healthy Subjects.
Front Neurosci. 2019 May 22;13:520. doi: 10.3389/fnins.2019.00520. eCollection 2019.

本文引用的文献

1
Penalized weighted least-squares image reconstruction for positron emission tomography.
IEEE Trans Med Imaging. 1994;13(2):290-300. doi: 10.1109/42.293921.
2
Spatial domain method for the design of RF pulses in multicoil parallel excitation.
Magn Reson Med. 2006 Sep;56(3):620-9. doi: 10.1002/mrm.20978.
3
Fast-kz three-dimensional tailored radiofrequency pulse for reduced B1 inhomogeneity.
Magn Reson Med. 2006 Apr;55(4):719-24. doi: 10.1002/mrm.20840.
7
Transmit and receive transmission line arrays for 7 Tesla parallel imaging.
Magn Reson Med. 2005 Feb;53(2):434-45. doi: 10.1002/mrm.20321.
8
Measurement and correction of transmitter and receiver induced nonuniformities in vivo.
Magn Reson Med. 2005 Feb;53(2):408-17. doi: 10.1002/mrm.20354.
10
Central brightening due to constructive interference with, without, and despite dielectric resonance.
J Magn Reson Imaging. 2005 Feb;21(2):192-6. doi: 10.1002/jmri.20245.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验