Sharma Sushil
Saint James School of Medicine, Plaza Juliana 4, Kralendijk, The Dutch Caribbean, Bonaire, The Netherlands.
Curr Drug Targets. 2016;17(16):1894-1907. doi: 10.2174/1389450117666160720091233.
Recent advances in the self-shielded cyclotrons, improved targets, videomonitored hot cells design, and automated PET radiopharmaceutical (RPs) synthesis modules, utilizing computer-controlled graphic user interphase (GUI) has revolutionized PET molecular imaging technology for basic biomedical research and theranostics to accomplish the ultimate goal of evidence-based personalized medicine. Particularly, [18F]HX4: (3-[18F]fluoro-2-(4-((2-nitro-1Himidazol-1-yl)methyl)-1H-1,2,3,-triazol-1- yl)-propan-1-ol), 18F-FAZA: 1-(5-[18F]Fluoro-5-deoxy-α-D-arabinofuranosyl)-2- nitroimidazole, and 18F-FMSIO: 18F-Ffluoromisonidazole to assess tumor hypoxia, [18F]FB-VAD-FMK: [18F]4-fluorobenzylcarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone to determine in vivo apoptosis, 64Cu-PTSM: 64Cu-Pyrualdehyde Bis-NMethylthiosemicarbazone for brain and myocardial perfusion imaging, and 68Ga-DOTATOC: 68Ga- DOTAD-Phy1-Tyr3-octreotide and 68Ga-DOTANOC: 68Ga-(1,4,7,10-tetraazacyclododecane- N,N',N'',N'''-tetraacetic acid)-1-NaI3-octreotide for neuroendocrine and neural crest tumors have demonstrated great promise in personalized theranostics. Furthermore, multimodality imaging with 124IPET/ CT and 18FDG-PET/CT rationalizes 131I treatment in thyroid cancer patients to prevent cost and morbid toxicity. In addition to 18F-labeled PET-RPs used in clinical practice, novel discoveries of chemical reactions including transition metal-mediated cross-coupling of carbon-carbon, carbonheterocarbon, and click chemistry at ambient temperature with significantly reduced synthesis times, labeled even with short-lived radionuclides such as 11C, has facilitated development of novel PET-RPs. These innovative approaches to synthesize PET-RPs and efficient image acquisition capabilities have improved the resolution of multimodality imaging and significantly reduced the radiation exposure to patients as well as healthcare professionals. Future developments in novel PET-RPs, utilizing automated microfluidic synthesis modules and multifunctional nanoparticles, will improve biomarker discovery, internal dosimetry, pharmacokinetics, immunotherapy, and stem cell tracking in regenerative medicine. This review provides recent developments in the synthesis of clinically-significant cyclotron and generator- based PET-RPs with potential applications in cardiovascular diseases, neurodegenerative diseases, and cancer to accomplish the ultimate goal of evidence-based personalized theranostics.
自屏蔽回旋加速器的最新进展、改进的靶材、视频监控热室设计以及自动化正电子发射断层显像(PET)放射性药物合成模块,利用计算机控制的图形用户界面(GUI),彻底改变了用于基础生物医学研究和治疗诊断学的PET分子成像技术,以实现循证个性化医疗的最终目标。特别是,[18F]HX4:(3-[18F]氟-2-(4-((2-硝基-1H-咪唑-1-基)甲基)-1H-1,2,3,-三唑-1-基)-丙-1-醇)、18F-FAZA:1-(5-[18F]氟-5-脱氧-α-D-阿拉伯呋喃糖基)-2-硝基咪唑以及18F-FMSIO:18F-氟米索硝唑用于评估肿瘤缺氧,[18F]FB-VAD-FMK:[18F]4-氟苄基羰基-Val-Ala-Asp(OMe)-氟甲基酮用于测定体内细胞凋亡,64Cu-PTSM:64Cu-丙酮酸双-N-甲基硫代半卡巴腙用于脑和心肌灌注成像,以及68Ga-DOTATOC:68Ga-DOTAD-Phy1-Tyr3-奥曲肽和6&Ga-DOTANOC:68Ga-(1,4,7,10-四氮杂环十二烷-N,N',N'',N'''-四乙酸)-1-NaI3-奥曲肽用于神经内分泌和神经嵴肿瘤,已在个性化治疗诊断学中显示出巨大潜力。此外,124I-PET/CT和18F-FDG-PET/CT的多模态成像使甲状腺癌患者的131I治疗更加合理,以避免成本和病态毒性。除了临床实践中使用的18F标记的PET放射性药物外,包括过渡金属介导的碳-碳、碳-杂碳交叉偶联以及常温下点击化学等化学反应的新发现,显著缩短了合成时间,甚至可以用11C等短寿命放射性核素进行标记,促进了新型PET放射性药物的开发。这些合成PET放射性药物的创新方法和高效的图像采集能力提高了多模态成像的分辨率,并显著减少了患者以及医护人员的辐射暴露。利用自动化微流控合成模块和多功能纳米颗粒的新型PET放射性药物的未来发展,将改善生物标志物发现、体内剂量测定、药代动力学、免疫治疗以及再生医学中的干细胞追踪。本综述介绍了临床上重要的基于回旋加速器和发生器的PET放射性药物合成的最新进展,及其在心血管疾病、神经退行性疾病和癌症中的潜在应用,以实现循证个性化治疗诊断学的最终目标。