Data Science Institute , Imperial College London, London, United Kingdom .
Big Data. 2016 Jun;4(2):109-19. doi: 10.1089/big.2015.0056.
This work presents a systemic top-down visualization of Bitcoin transaction activity to explore dynamically generated patterns of algorithmic behavior. Bitcoin dominates the cryptocurrency markets and presents researchers with a rich source of real-time transactional data. The pseudonymous yet public nature of the data presents opportunities for the discovery of human and algorithmic behavioral patterns of interest to many parties such as financial regulators, protocol designers, and security analysts. However, retaining visual fidelity to the underlying data to retain a fuller understanding of activity within the network remains challenging, particularly in real time. We expose an effective force-directed graph visualization employed in our large-scale data observation facility to accelerate this data exploration and derive useful insight among domain experts and the general public alike. The high-fidelity visualizations demonstrated in this article allowed for collaborative discovery of unexpected high frequency transaction patterns, including automated laundering operations, and the evolution of multiple distinct algorithmic denial of service attacks on the Bitcoin network.
这项工作呈现了比特币交易活动的系统自上而下的可视化,以探索动态生成的算法行为模式。比特币主导着加密货币市场,为研究人员提供了丰富的实时交易数据来源。数据的匿名性和公开性为许多方(如金融监管机构、协议设计者和安全分析师)发现人类和算法行为模式提供了机会。然而,为了保留对底层数据的视觉保真度,以更全面地了解网络内的活动,特别是在实时情况下,这仍然具有挑战性。我们公开了我们在大规模数据观测设施中使用的一种有效力导向图可视化方法,以加速数据探索,并为领域专家和普通大众提供有用的见解。本文展示的高保真可视化效果允许对意外的高频交易模式进行协作式发现,包括自动化洗钱操作以及针对比特币网络的多种不同算法拒绝服务攻击的演变。