Suppr超能文献

通过子图对比学习检测比特币洗钱行为。

Bitcoin Money Laundering Detection via Subgraph Contrastive Learning.

作者信息

Ouyang Shiyu, Bai Qianlan, Feng Hui, Hu Bo

机构信息

School of Information Science and Technology, Fudan University, Shanghai 200433, China.

School of Computer Science, Fudan University, Shanghai 200433, China.

出版信息

Entropy (Basel). 2024 Feb 28;26(3):211. doi: 10.3390/e26030211.

Abstract

The rapid development of cryptocurrencies has led to an increasing severity of money laundering activities. In recent years, leveraging graph neural networks for cryptocurrency fraud detection has yielded promising results. However, many existing methods predominantly focus on node classification, i.e., detecting individual illicit transactions, rather than uncovering behavioral pattern differences among money laundering groups. In this paper, we tackle the challenges presented by the organized, heterogeneous, and noisy nature of Bitcoin money laundering. We propose a novel subgraph-based contrastive learning algorithm for heterogeneous graphs, named Bit-CHetG, to perform money laundering group detection. Specifically, we employ predefined metapaths to construct the homogeneous subgraphs of wallet addresses and transaction records from the address-transaction heterogeneous graph, enhancing our ability to capture heterogeneity. Subsequently, we utilize graph neural networks to separately extract the topological embedding representations of transaction subgraphs and associated address representations of transaction nodes. Lastly, supervised contrastive learning is introduced to reduce the effect of noise, which pulls together the transaction subgraphs with the same class while pushing apart the subgraphs with different classes. By conducting experiments on two real-world datasets with homogeneous and heterogeneous graphs, the Micro F1 Score of our proposed Bit-CHetG is improved by at least 5% compared to others.

摘要

加密货币的快速发展导致洗钱活动日益猖獗。近年来,利用图神经网络进行加密货币欺诈检测取得了可喜的成果。然而,许多现有方法主要侧重于节点分类,即检测单个非法交易,而不是揭示洗钱团伙之间的行为模式差异。在本文中,我们应对比特币洗钱活动的组织性、异质性和噪声性所带来的挑战。我们提出了一种新颖的基于子图的异构图对比学习算法,名为Bit-CHetG,用于进行洗钱团伙检测。具体而言,我们使用预定义的元路径从地址-交易异构图中构建钱包地址和交易记录的同构子图,增强我们捕捉异质性的能力。随后,我们利用图神经网络分别提取交易子图的拓扑嵌入表示和交易节点的相关地址表示。最后,引入监督对比学习以减少噪声的影响,将同类交易子图拉近,同时将不同类子图推开。通过在两个包含同构图和异构图的真实世界数据集上进行实验,我们提出的Bit-CHetG的微F1分数比其他方法至少提高了5%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fba1/10969714/c3e2edeb6069/entropy-26-00211-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验